Loading…

Numerical Investigation of Fluid Flow and Performance Prediction in a Fluid Coupling Using Large Eddy Simulation

Large eddy simulation (LES) with various subgrid-scale (SGS) models was introduced to numerically calculate the transient flow of the hydraulic coupling. By using LES, the study aimed to advance description ability of internal flow and performance prediction. The CFD results were verified by experim...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Rotating Machinery 2017-01, Vol.2017 (2017), p.1-11-017
Main Authors: Liu, Chunbao, Li, Xingzhong, Li, Yuan, Cai, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large eddy simulation (LES) with various subgrid-scale (SGS) models was introduced to numerically calculate the transient flow of the hydraulic coupling. By using LES, the study aimed to advance description ability of internal flow and performance prediction. The CFD results were verified by experimental data. For the purpose of the description of the flow field, six subgrid-scale models for LES were employed to depict the flow field; the distribution structure of flow field was legible. Moreover, the flow mechanism was analyzed using 3D vortex structures, and those showed that DSL and KET captured abundant vortex structures and provided a relatively moderate eddy viscosity in the chamber. The predicted values of the braking torque for hydraulic coupling were compared with experimental data. The comparison results were compared with several simulation models, such as SAS and RKE, and SSTKW models. Those comparison results showed that the SGS models, especially DSL and KET, were applicable to obtain the more accurate predicted results than SAS and RKE, and SSTKW models. Clearly, the predicted results of LES with DSL and KET were far more accurate than the previous studies. The performance prediction was significantly improved.
ISSN:1023-621X
1542-3034
DOI:10.1155/2017/3718671