Loading…
A Survey of Using Swarm Intelligence Algorithms in IoT
With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provide...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (5), p.1420 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93 |
container_end_page | |
container_issue | 5 |
container_start_page | 1420 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Sun, Weifeng Tang, Min Zhang, Lijun Huo, Zhiqiang Shu, Lei |
description | With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn. |
doi_str_mv | 10.3390/s20051420 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b</doaj_id><sourcerecordid>2375873255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaT7aQ_9AMfTSHLYZjeSvS2EJTbsQyCHJWYw-7GixrVSyU_Lvq2TTJelphtHDw2hexj5x-CZEC6cJAUouEd6ww1zkqkGEty_6A3aU0hYAhRDNe3YgkJfQcjxk1bq4WuK9eyhCV9wkP_XF1R-KY7GZZjcMvneTccV66EP08-2YCj8Vm3D9gb3raEju43M9ZjfnP67Pfq0uLn9uztYXKyOrdl5pJwUKZwg16gYcCW6ByIqq4xp0yTlJDh1YLEsqLem6RS3RogTTadOKY7bZeW2grbqLfqT4oAJ59TQIsVcUZ28GpzqqhJWN5YZXUmigrOTUVK3GFnmts-v7znW36NFZ46Y50vBK-vpl8reqD_eqhqasELLg67Mght-LS7MafTL5SjS5sCSFoi6bWuS_ZPTLf-g2LHHKp3qisEbEOlMnO8rEkFJ03X4ZDuoxWbVPNrOfX26_J_9FKf4CfuGb7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375272227</pqid></control><display><type>article</type><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</creator><creatorcontrib>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</creatorcontrib><description>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20051420</identifier><identifier>PMID: 32150912</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; ant colony optimization ; artificial bee colony algorithm ; Behavior ; Cloud computing ; Cooperation ; Data collection ; Energy consumption ; Global optimization ; Internet of Things ; Localization ; Optimization ; particle swarm optimization ; Radio frequency identification ; Review ; Sensors ; swarm intelligence algorithm ; uav ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1420</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</citedby><cites>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</cites><orcidid>0000-0001-7705-5331 ; 0000-0003-3851-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375272227/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375272227?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Huo, Zhiqiang</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</description><subject>Algorithms</subject><subject>ant colony optimization</subject><subject>artificial bee colony algorithm</subject><subject>Behavior</subject><subject>Cloud computing</subject><subject>Cooperation</subject><subject>Data collection</subject><subject>Energy consumption</subject><subject>Global optimization</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Optimization</subject><subject>particle swarm optimization</subject><subject>Radio frequency identification</subject><subject>Review</subject><subject>Sensors</subject><subject>swarm intelligence algorithm</subject><subject>uav</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAQhkVpaT7aQ_9AMfTSHLYZjeSvS2EJTbsQyCHJWYw-7GixrVSyU_Lvq2TTJelphtHDw2hexj5x-CZEC6cJAUouEd6ww1zkqkGEty_6A3aU0hYAhRDNe3YgkJfQcjxk1bq4WuK9eyhCV9wkP_XF1R-KY7GZZjcMvneTccV66EP08-2YCj8Vm3D9gb3raEju43M9ZjfnP67Pfq0uLn9uztYXKyOrdl5pJwUKZwg16gYcCW6ByIqq4xp0yTlJDh1YLEsqLem6RS3RogTTadOKY7bZeW2grbqLfqT4oAJ59TQIsVcUZ28GpzqqhJWN5YZXUmigrOTUVK3GFnmts-v7znW36NFZ46Y50vBK-vpl8reqD_eqhqasELLg67Mght-LS7MafTL5SjS5sCSFoi6bWuS_ZPTLf-g2LHHKp3qisEbEOlMnO8rEkFJ03X4ZDuoxWbVPNrOfX26_J_9FKf4CfuGb7Q</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Sun, Weifeng</creator><creator>Tang, Min</creator><creator>Zhang, Lijun</creator><creator>Huo, Zhiqiang</creator><creator>Shu, Lei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7705-5331</orcidid><orcidid>https://orcid.org/0000-0003-3851-9986</orcidid></search><sort><creationdate>20200305</creationdate><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><author>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ant colony optimization</topic><topic>artificial bee colony algorithm</topic><topic>Behavior</topic><topic>Cloud computing</topic><topic>Cooperation</topic><topic>Data collection</topic><topic>Energy consumption</topic><topic>Global optimization</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Optimization</topic><topic>particle swarm optimization</topic><topic>Radio frequency identification</topic><topic>Review</topic><topic>Sensors</topic><topic>swarm intelligence algorithm</topic><topic>uav</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Huo, Zhiqiang</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weifeng</au><au>Tang, Min</au><au>Zhang, Lijun</au><au>Huo, Zhiqiang</au><au>Shu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Using Swarm Intelligence Algorithms in IoT</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1420</spage><pages>1420-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32150912</pmid><doi>10.3390/s20051420</doi><orcidid>https://orcid.org/0000-0001-7705-5331</orcidid><orcidid>https://orcid.org/0000-0003-3851-9986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1420 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms ant colony optimization artificial bee colony algorithm Behavior Cloud computing Cooperation Data collection Energy consumption Global optimization Internet of Things Localization Optimization particle swarm optimization Radio frequency identification Review Sensors swarm intelligence algorithm uav Wireless networks wireless sensor network Wireless sensor networks |
title | A Survey of Using Swarm Intelligence Algorithms in IoT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Using%20Swarm%20Intelligence%20Algorithms%20in%20IoT&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Weifeng&rft.date=2020-03-05&rft.volume=20&rft.issue=5&rft.spage=1420&rft.pages=1420-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20051420&rft_dat=%3Cproquest_doaj_%3E2375873255%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375272227&rft_id=info:pmid/32150912&rfr_iscdi=true |