Loading…

A Survey of Using Swarm Intelligence Algorithms in IoT

With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provide...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (5), p.1420
Main Authors: Sun, Weifeng, Tang, Min, Zhang, Lijun, Huo, Zhiqiang, Shu, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93
cites cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93
container_end_page
container_issue 5
container_start_page 1420
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Sun, Weifeng
Tang, Min
Zhang, Lijun
Huo, Zhiqiang
Shu, Lei
description With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.
doi_str_mv 10.3390/s20051420
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b</doaj_id><sourcerecordid>2375873255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaT7aQ_9AMfTSHLYZjeSvS2EJTbsQyCHJWYw-7GixrVSyU_Lvq2TTJelphtHDw2hexj5x-CZEC6cJAUouEd6ww1zkqkGEty_6A3aU0hYAhRDNe3YgkJfQcjxk1bq4WuK9eyhCV9wkP_XF1R-KY7GZZjcMvneTccV66EP08-2YCj8Vm3D9gb3raEju43M9ZjfnP67Pfq0uLn9uztYXKyOrdl5pJwUKZwg16gYcCW6ByIqq4xp0yTlJDh1YLEsqLem6RS3RogTTadOKY7bZeW2grbqLfqT4oAJ59TQIsVcUZ28GpzqqhJWN5YZXUmigrOTUVK3GFnmts-v7znW36NFZ46Y50vBK-vpl8reqD_eqhqasELLg67Mght-LS7MafTL5SjS5sCSFoi6bWuS_ZPTLf-g2LHHKp3qisEbEOlMnO8rEkFJ03X4ZDuoxWbVPNrOfX26_J_9FKf4CfuGb7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375272227</pqid></control><display><type>article</type><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</creator><creatorcontrib>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</creatorcontrib><description>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20051420</identifier><identifier>PMID: 32150912</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; ant colony optimization ; artificial bee colony algorithm ; Behavior ; Cloud computing ; Cooperation ; Data collection ; Energy consumption ; Global optimization ; Internet of Things ; Localization ; Optimization ; particle swarm optimization ; Radio frequency identification ; Review ; Sensors ; swarm intelligence algorithm ; uav ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1420</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</citedby><cites>FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</cites><orcidid>0000-0001-7705-5331 ; 0000-0003-3851-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375272227/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375272227?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32150912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Huo, Zhiqiang</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</description><subject>Algorithms</subject><subject>ant colony optimization</subject><subject>artificial bee colony algorithm</subject><subject>Behavior</subject><subject>Cloud computing</subject><subject>Cooperation</subject><subject>Data collection</subject><subject>Energy consumption</subject><subject>Global optimization</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Optimization</subject><subject>particle swarm optimization</subject><subject>Radio frequency identification</subject><subject>Review</subject><subject>Sensors</subject><subject>swarm intelligence algorithm</subject><subject>uav</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAQhkVpaT7aQ_9AMfTSHLYZjeSvS2EJTbsQyCHJWYw-7GixrVSyU_Lvq2TTJelphtHDw2hexj5x-CZEC6cJAUouEd6ww1zkqkGEty_6A3aU0hYAhRDNe3YgkJfQcjxk1bq4WuK9eyhCV9wkP_XF1R-KY7GZZjcMvneTccV66EP08-2YCj8Vm3D9gb3raEju43M9ZjfnP67Pfq0uLn9uztYXKyOrdl5pJwUKZwg16gYcCW6ByIqq4xp0yTlJDh1YLEsqLem6RS3RogTTadOKY7bZeW2grbqLfqT4oAJ59TQIsVcUZ28GpzqqhJWN5YZXUmigrOTUVK3GFnmts-v7znW36NFZ46Y50vBK-vpl8reqD_eqhqasELLg67Mght-LS7MafTL5SjS5sCSFoi6bWuS_ZPTLf-g2LHHKp3qisEbEOlMnO8rEkFJ03X4ZDuoxWbVPNrOfX26_J_9FKf4CfuGb7Q</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Sun, Weifeng</creator><creator>Tang, Min</creator><creator>Zhang, Lijun</creator><creator>Huo, Zhiqiang</creator><creator>Shu, Lei</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7705-5331</orcidid><orcidid>https://orcid.org/0000-0003-3851-9986</orcidid></search><sort><creationdate>20200305</creationdate><title>A Survey of Using Swarm Intelligence Algorithms in IoT</title><author>Sun, Weifeng ; Tang, Min ; Zhang, Lijun ; Huo, Zhiqiang ; Shu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>ant colony optimization</topic><topic>artificial bee colony algorithm</topic><topic>Behavior</topic><topic>Cloud computing</topic><topic>Cooperation</topic><topic>Data collection</topic><topic>Energy consumption</topic><topic>Global optimization</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Optimization</topic><topic>particle swarm optimization</topic><topic>Radio frequency identification</topic><topic>Review</topic><topic>Sensors</topic><topic>swarm intelligence algorithm</topic><topic>uav</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Huo, Zhiqiang</creatorcontrib><creatorcontrib>Shu, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weifeng</au><au>Tang, Min</au><au>Zhang, Lijun</au><au>Huo, Zhiqiang</au><au>Shu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Using Swarm Intelligence Algorithms in IoT</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>1420</spage><pages>1420-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the continuing advancements in technologies (such as machine to machine, wireless telecommunications, artificial intelligence, and big data analysis), the Internet of Things (IoT) aims to connect everything for information sharing and intelligent decision-making. Swarm intelligence (SI) provides the possibility of SI behavior through collaboration in individuals that have limited or no intelligence. Its potential parallelism and distribution characteristics can be used to realize global optimization and solve nonlinear complex problems. This paper reviews representative SI algorithms and summarizes their applications in the IoT. The main focus consists in the analysis of SI-enabled applications to wireless sensor network (WSN) and discussion of related research problems in the WSN. Also, we concluded SI-based applications in other IoT fields, such as SI in UAV-aided wireless network. Finally, possible research prospects and future trends are drawn.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32150912</pmid><doi>10.3390/s20051420</doi><orcidid>https://orcid.org/0000-0001-7705-5331</orcidid><orcidid>https://orcid.org/0000-0003-3851-9986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-03, Vol.20 (5), p.1420
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fa63d48d1c1643b0a55a1a869b29217b
source Publicly Available Content Database; PubMed Central
subjects Algorithms
ant colony optimization
artificial bee colony algorithm
Behavior
Cloud computing
Cooperation
Data collection
Energy consumption
Global optimization
Internet of Things
Localization
Optimization
particle swarm optimization
Radio frequency identification
Review
Sensors
swarm intelligence algorithm
uav
Wireless networks
wireless sensor network
Wireless sensor networks
title A Survey of Using Swarm Intelligence Algorithms in IoT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Using%20Swarm%20Intelligence%20Algorithms%20in%20IoT&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Sun,%20Weifeng&rft.date=2020-03-05&rft.volume=20&rft.issue=5&rft.spage=1420&rft.pages=1420-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20051420&rft_dat=%3Cproquest_doaj_%3E2375873255%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-be4323eca2b2b80ea31d0aad36f1b0b511a410f0d255a5dab792b42d240cfbc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375272227&rft_id=info:pmid/32150912&rfr_iscdi=true