Loading…
Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms
The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they ne...
Saved in:
Published in: | Energies (Basel) 2023-07, Vol.16 (14), p.5246 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3 |
container_end_page | |
container_issue | 14 |
container_start_page | 5246 |
container_title | Energies (Basel) |
container_volume | 16 |
creator | Rezk, Hegazy Wilberforce, Tabbi Olabi, A. G. Ghoniem, Rania M. Sayed, Enas Taha Ali Abdelkareem, Mohammad |
description | The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry. |
doi_str_mv | 10.3390/en16145246 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759040759</galeid><doaj_id>oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1</doaj_id><sourcerecordid>A759040759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</originalsourceid><addsrcrecordid>eNpNkVFrFDEQxxexYKl98RMEfBOuTXay2eTxOFo9qLRIC76FSXZy5tjbnNncg356065UJzCTDP__jwnTNB8EvwIw_JomoYTsWqneNOfCGLUSvIe3_93fNZfzvOc1AAQAnDff748lHnBkD5jxQIUy2w40lRiixxLTxFJgyB5uvrLbE41sQ-PInuY47dg38lXIXgDx9yJej7uUY_lxmN83ZwHHmS7_1ovm6fbmcfNldXf_ebtZ36285LysXAe94k6LtiU91Ac4Bd4b8sF1QqH3YJTQTqLRSA77LnDZqtAPUreAA1w024U7JNzbY66fyb9swmhfGinvLOYS_Ug2oAqdMi140lK41mk5gJbeiA5U70RlfVxYx5x-nmgudp9Oearj21ZL4J1W_bPqalHtsELjFFLJ6OsZ6BB9mijE2l_3neGS11wNnxaDz2meM4XXMQW3z5uz_zYHfwCYJIkA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843058671</pqid></control><display><type>article</type><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</creator><creatorcontrib>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</creatorcontrib><description>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16145246</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Control systems ; Eagles ; Energy resources ; Fuel cell industry ; Fuel cells ; Mathematical models ; Mathematical optimization ; modeling ; Mold ; Neural networks ; optimization ; Optimization algorithms ; Parameter identification ; PEM fuel cell</subject><ispartof>Energies (Basel), 2023-07, Vol.16 (14), p.5246</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</citedby><cites>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</cites><orcidid>0000-0001-9254-2744 ; 0000-0003-3248-9843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843058671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843058671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Wilberforce, Tabbi</creatorcontrib><creatorcontrib>Olabi, A. G.</creatorcontrib><creatorcontrib>Ghoniem, Rania M.</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Ali Abdelkareem, Mohammad</creatorcontrib><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><title>Energies (Basel)</title><description>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Control systems</subject><subject>Eagles</subject><subject>Energy resources</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>modeling</subject><subject>Mold</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>PEM fuel cell</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrFDEQxxexYKl98RMEfBOuTXay2eTxOFo9qLRIC76FSXZy5tjbnNncg356065UJzCTDP__jwnTNB8EvwIw_JomoYTsWqneNOfCGLUSvIe3_93fNZfzvOc1AAQAnDff748lHnBkD5jxQIUy2w40lRiixxLTxFJgyB5uvrLbE41sQ-PInuY47dg38lXIXgDx9yJej7uUY_lxmN83ZwHHmS7_1ovm6fbmcfNldXf_ebtZ36285LysXAe94k6LtiU91Ac4Bd4b8sF1QqH3YJTQTqLRSA77LnDZqtAPUreAA1w024U7JNzbY66fyb9swmhfGinvLOYS_Ug2oAqdMi140lK41mk5gJbeiA5U70RlfVxYx5x-nmgudp9Oearj21ZL4J1W_bPqalHtsELjFFLJ6OsZ6BB9mijE2l_3neGS11wNnxaDz2meM4XXMQW3z5uz_zYHfwCYJIkA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Rezk, Hegazy</creator><creator>Wilberforce, Tabbi</creator><creator>Olabi, A. G.</creator><creator>Ghoniem, Rania M.</creator><creator>Sayed, Enas Taha</creator><creator>Ali Abdelkareem, Mohammad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9254-2744</orcidid><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid></search><sort><creationdate>20230701</creationdate><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><author>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Control systems</topic><topic>Eagles</topic><topic>Energy resources</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>modeling</topic><topic>Mold</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>PEM fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Wilberforce, Tabbi</creatorcontrib><creatorcontrib>Olabi, A. G.</creatorcontrib><creatorcontrib>Ghoniem, Rania M.</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Ali Abdelkareem, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezk, Hegazy</au><au>Wilberforce, Tabbi</au><au>Olabi, A. G.</au><au>Ghoniem, Rania M.</au><au>Sayed, Enas Taha</au><au>Ali Abdelkareem, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</atitle><jtitle>Energies (Basel)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>5246</spage><pages>5246-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16145246</doi><orcidid>https://orcid.org/0000-0001-9254-2744</orcidid><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2023-07, Vol.16 (14), p.5246 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Analysis Control systems Eagles Energy resources Fuel cell industry Fuel cells Mathematical models Mathematical optimization modeling Mold Neural networks optimization Optimization algorithms Parameter identification PEM fuel cell |
title | Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Parameter%20Identification%20of%20a%20PEM%20Fuel%20Cell%20Using%20Recent%20Optimization%20Algorithms&rft.jtitle=Energies%20(Basel)&rft.au=Rezk,%20Hegazy&rft.date=2023-07-01&rft.volume=16&rft.issue=14&rft.spage=5246&rft.pages=5246-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16145246&rft_dat=%3Cgale_doaj_%3EA759040759%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843058671&rft_id=info:pmid/&rft_galeid=A759040759&rfr_iscdi=true |