Loading…

Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms

The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they ne...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-07, Vol.16 (14), p.5246
Main Authors: Rezk, Hegazy, Wilberforce, Tabbi, Olabi, A. G., Ghoniem, Rania M., Sayed, Enas Taha, Ali Abdelkareem, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3
cites cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3
container_end_page
container_issue 14
container_start_page 5246
container_title Energies (Basel)
container_volume 16
creator Rezk, Hegazy
Wilberforce, Tabbi
Olabi, A. G.
Ghoniem, Rania M.
Sayed, Enas Taha
Ali Abdelkareem, Mohammad
description The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.
doi_str_mv 10.3390/en16145246
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759040759</galeid><doaj_id>oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1</doaj_id><sourcerecordid>A759040759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</originalsourceid><addsrcrecordid>eNpNkVFrFDEQxxexYKl98RMEfBOuTXay2eTxOFo9qLRIC76FSXZy5tjbnNncg356065UJzCTDP__jwnTNB8EvwIw_JomoYTsWqneNOfCGLUSvIe3_93fNZfzvOc1AAQAnDff748lHnBkD5jxQIUy2w40lRiixxLTxFJgyB5uvrLbE41sQ-PInuY47dg38lXIXgDx9yJej7uUY_lxmN83ZwHHmS7_1ovm6fbmcfNldXf_ebtZ36285LysXAe94k6LtiU91Ac4Bd4b8sF1QqH3YJTQTqLRSA77LnDZqtAPUreAA1w024U7JNzbY66fyb9swmhfGinvLOYS_Ug2oAqdMi140lK41mk5gJbeiA5U70RlfVxYx5x-nmgudp9Oearj21ZL4J1W_bPqalHtsELjFFLJ6OsZ6BB9mijE2l_3neGS11wNnxaDz2meM4XXMQW3z5uz_zYHfwCYJIkA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843058671</pqid></control><display><type>article</type><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</creator><creatorcontrib>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</creatorcontrib><description>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16145246</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Control systems ; Eagles ; Energy resources ; Fuel cell industry ; Fuel cells ; Mathematical models ; Mathematical optimization ; modeling ; Mold ; Neural networks ; optimization ; Optimization algorithms ; Parameter identification ; PEM fuel cell</subject><ispartof>Energies (Basel), 2023-07, Vol.16 (14), p.5246</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</citedby><cites>FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</cites><orcidid>0000-0001-9254-2744 ; 0000-0003-3248-9843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2843058671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2843058671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Wilberforce, Tabbi</creatorcontrib><creatorcontrib>Olabi, A. G.</creatorcontrib><creatorcontrib>Ghoniem, Rania M.</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Ali Abdelkareem, Mohammad</creatorcontrib><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><title>Energies (Basel)</title><description>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Control systems</subject><subject>Eagles</subject><subject>Energy resources</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>modeling</subject><subject>Mold</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>PEM fuel cell</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrFDEQxxexYKl98RMEfBOuTXay2eTxOFo9qLRIC76FSXZy5tjbnNncg356065UJzCTDP__jwnTNB8EvwIw_JomoYTsWqneNOfCGLUSvIe3_93fNZfzvOc1AAQAnDff748lHnBkD5jxQIUy2w40lRiixxLTxFJgyB5uvrLbE41sQ-PInuY47dg38lXIXgDx9yJej7uUY_lxmN83ZwHHmS7_1ovm6fbmcfNldXf_ebtZ36285LysXAe94k6LtiU91Ac4Bd4b8sF1QqH3YJTQTqLRSA77LnDZqtAPUreAA1w024U7JNzbY66fyb9swmhfGinvLOYS_Ug2oAqdMi140lK41mk5gJbeiA5U70RlfVxYx5x-nmgudp9Oearj21ZL4J1W_bPqalHtsELjFFLJ6OsZ6BB9mijE2l_3neGS11wNnxaDz2meM4XXMQW3z5uz_zYHfwCYJIkA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Rezk, Hegazy</creator><creator>Wilberforce, Tabbi</creator><creator>Olabi, A. G.</creator><creator>Ghoniem, Rania M.</creator><creator>Sayed, Enas Taha</creator><creator>Ali Abdelkareem, Mohammad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9254-2744</orcidid><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid></search><sort><creationdate>20230701</creationdate><title>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</title><author>Rezk, Hegazy ; Wilberforce, Tabbi ; Olabi, A. G. ; Ghoniem, Rania M. ; Sayed, Enas Taha ; Ali Abdelkareem, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Control systems</topic><topic>Eagles</topic><topic>Energy resources</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>modeling</topic><topic>Mold</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>PEM fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Wilberforce, Tabbi</creatorcontrib><creatorcontrib>Olabi, A. G.</creatorcontrib><creatorcontrib>Ghoniem, Rania M.</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Ali Abdelkareem, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezk, Hegazy</au><au>Wilberforce, Tabbi</au><au>Olabi, A. G.</au><au>Ghoniem, Rania M.</au><au>Sayed, Enas Taha</au><au>Ali Abdelkareem, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms</atitle><jtitle>Energies (Basel)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>5246</spage><pages>5246-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The parameter identification of a PEMFC is the process of using optimization algorithms to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-performance prediction model. These parameters are not always available from the manufacturer’s datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance. Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot (COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as decision variables, and the fitness function to be minimized is the sum square error (SSE) between the estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and control systems for the automotive industry. Furthermore, it was deduced that the convergence speed for BES was faster compared to the other algorithms investigated. This study aims to use metaheuristic algorithms to predict fuel-cell performance for the development and commercialization of digital twins in the automotive industry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16145246</doi><orcidid>https://orcid.org/0000-0001-9254-2744</orcidid><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-07, Vol.16 (14), p.5246
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fa6f56923ce841b2b84d384c915367b1
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Analysis
Control systems
Eagles
Energy resources
Fuel cell industry
Fuel cells
Mathematical models
Mathematical optimization
modeling
Mold
Neural networks
optimization
Optimization algorithms
Parameter identification
PEM fuel cell
title Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Parameter%20Identification%20of%20a%20PEM%20Fuel%20Cell%20Using%20Recent%20Optimization%20Algorithms&rft.jtitle=Energies%20(Basel)&rft.au=Rezk,%20Hegazy&rft.date=2023-07-01&rft.volume=16&rft.issue=14&rft.spage=5246&rft.pages=5246-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16145246&rft_dat=%3Cgale_doaj_%3EA759040759%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-b53760b8122e8d5373b63cc9ecfb516acc39618b4a98aeba75f0426f7d4823ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843058671&rft_id=info:pmid/&rft_galeid=A759040759&rfr_iscdi=true