Loading…

Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection

Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes lim...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-01, Vol.24 (3), p.716
Main Authors: Hernández-Nava, Gerardo, Salazar-Colores, Sebastián, Cabal-Yepez, Eduardo, Ramos-Arreguín, Juan-Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3
cites cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3
container_end_page
container_issue 3
container_start_page 716
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Hernández-Nava, Gerardo
Salazar-Colores, Sebastián
Cabal-Yepez, Eduardo
Ramos-Arreguín, Juan-Manuel
description Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.
doi_str_mv 10.3390/s24030716
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782092687</galeid><doaj_id>oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802</doaj_id><sourcerecordid>A782092687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</originalsourceid><addsrcrecordid>eNptkk-P0zAQxS0EYpfCgS-AInFZJLI4Hqd2jlVZoNKqIAFna-KMt67SeHEcIfj0OHQpf4R8sP30e2881jD2tOKXAA1_NQrJgatqeY-dV1LIUgvB7_9xPmOPxnHPuQAA_ZCdgc4-CXDO3AeM2PfUFxubsC-3lF4WWJzU9XZbrKLd-UQ2TZGKrz7tiivnvPU0pGK9w2HI3CqlfPVhKFyIxUfy32f4Nc22rD5mDxz2Iz252xfs85urT-t35fX7t5v16rq0UlepBKpJLZuW17WsEdqmAa07KcE1ltAqh-0yN9yKTikF1CBYKztlbQNLopZgwTbH3C7g3txGf8D4zQT05qcQ4o3BmLztyThEoOwVQmlZdXXbSoWStIYKpM5ftWAXx6zbGL5MNCZz8KOlvseBwjQa0Yiac15nx4I9_wfdhykOudOZkhmqKvhN3WCu7wcXUkQ7h5qV0oI3YqlVpi7_Q-XV0cHbMJDzWf_L8OJosDGMYyR36rviZp4Pc5qPzD67e-jUHqg7kb8GAn4AqC-xpw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924005113</pqid></control><display><type>article</type><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</creator><creatorcontrib>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</creatorcontrib><description>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24030716</identifier><identifier>PMID: 38339433</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; CNN ; Computational linguistics ; Convulsions &amp; seizures ; CWT ; Datasets ; Deep learning ; efficient channel attention ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Fourier transforms ; Humans ; Language processing ; Natural language interfaces ; Nervous system diseases ; Neural networks ; Neural Networks, Computer ; seizure detection ; Seizures (Medicine) ; Seizures - diagnosis ; Signal processing ; Support vector machines ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2024-01, Vol.24 (3), p.716</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</citedby><cites>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</cites><orcidid>0000-0002-2604-9692 ; 0000-0001-6903-4434 ; 0000-0002-8685-1003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2924005113/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2924005113?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,36989,44565,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38339433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Nava, Gerardo</creatorcontrib><creatorcontrib>Salazar-Colores, Sebastián</creatorcontrib><creatorcontrib>Cabal-Yepez, Eduardo</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan-Manuel</creatorcontrib><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>CNN</subject><subject>Computational linguistics</subject><subject>Convulsions &amp; seizures</subject><subject>CWT</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>efficient channel attention</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Nervous system diseases</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>seizure detection</subject><subject>Seizures (Medicine)</subject><subject>Seizures - diagnosis</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk-P0zAQxS0EYpfCgS-AInFZJLI4Hqd2jlVZoNKqIAFna-KMt67SeHEcIfj0OHQpf4R8sP30e2881jD2tOKXAA1_NQrJgatqeY-dV1LIUgvB7_9xPmOPxnHPuQAA_ZCdgc4-CXDO3AeM2PfUFxubsC-3lF4WWJzU9XZbrKLd-UQ2TZGKrz7tiivnvPU0pGK9w2HI3CqlfPVhKFyIxUfy32f4Nc22rD5mDxz2Iz252xfs85urT-t35fX7t5v16rq0UlepBKpJLZuW17WsEdqmAa07KcE1ltAqh-0yN9yKTikF1CBYKztlbQNLopZgwTbH3C7g3txGf8D4zQT05qcQ4o3BmLztyThEoOwVQmlZdXXbSoWStIYKpM5ftWAXx6zbGL5MNCZz8KOlvseBwjQa0Yiac15nx4I9_wfdhykOudOZkhmqKvhN3WCu7wcXUkQ7h5qV0oI3YqlVpi7_Q-XV0cHbMJDzWf_L8OJosDGMYyR36rviZp4Pc5qPzD67e-jUHqg7kb8GAn4AqC-xpw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hernández-Nava, Gerardo</creator><creator>Salazar-Colores, Sebastián</creator><creator>Cabal-Yepez, Eduardo</creator><creator>Ramos-Arreguín, Juan-Manuel</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2604-9692</orcidid><orcidid>https://orcid.org/0000-0001-6903-4434</orcidid><orcidid>https://orcid.org/0000-0002-8685-1003</orcidid></search><sort><creationdate>20240101</creationdate><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><author>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>CNN</topic><topic>Computational linguistics</topic><topic>Convulsions &amp; seizures</topic><topic>CWT</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>efficient channel attention</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Nervous system diseases</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>seizure detection</topic><topic>Seizures (Medicine)</topic><topic>Seizures - diagnosis</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Nava, Gerardo</creatorcontrib><creatorcontrib>Salazar-Colores, Sebastián</creatorcontrib><creatorcontrib>Cabal-Yepez, Eduardo</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan-Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Nava, Gerardo</au><au>Salazar-Colores, Sebastián</au><au>Cabal-Yepez, Eduardo</au><au>Ramos-Arreguín, Juan-Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>716</spage><pages>716-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38339433</pmid><doi>10.3390/s24030716</doi><orcidid>https://orcid.org/0000-0002-2604-9692</orcidid><orcidid>https://orcid.org/0000-0001-6903-4434</orcidid><orcidid>https://orcid.org/0000-0002-8685-1003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-01, Vol.24 (3), p.716
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802
source PubMed (Medline); Publicly Available Content Database
subjects Accuracy
Algorithms
Artificial intelligence
Classification
CNN
Computational linguistics
Convulsions & seizures
CWT
Datasets
Deep learning
efficient channel attention
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Fourier transforms
Humans
Language processing
Natural language interfaces
Nervous system diseases
Neural networks
Neural Networks, Computer
seizure detection
Seizures (Medicine)
Seizures - diagnosis
Signal processing
Support vector machines
Wavelet Analysis
Wavelet transforms
title Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Ictal-Net,%20a%20Parallel%20CNN%20Architecture%20with%20Efficient%20Channel%20Attention%20for%20Seizure%20Detection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Hern%C3%A1ndez-Nava,%20Gerardo&rft.date=2024-01-01&rft.volume=24&rft.issue=3&rft.spage=716&rft.pages=716-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24030716&rft_dat=%3Cgale_doaj_%3EA782092687%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924005113&rft_id=info:pmid/38339433&rft_galeid=A782092687&rfr_iscdi=true