Loading…
Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection
Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes lim...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-01, Vol.24 (3), p.716 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3 |
container_end_page | |
container_issue | 3 |
container_start_page | 716 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Hernández-Nava, Gerardo Salazar-Colores, Sebastián Cabal-Yepez, Eduardo Ramos-Arreguín, Juan-Manuel |
description | Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature. |
doi_str_mv | 10.3390/s24030716 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782092687</galeid><doaj_id>oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802</doaj_id><sourcerecordid>A782092687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</originalsourceid><addsrcrecordid>eNptkk-P0zAQxS0EYpfCgS-AInFZJLI4Hqd2jlVZoNKqIAFna-KMt67SeHEcIfj0OHQpf4R8sP30e2881jD2tOKXAA1_NQrJgatqeY-dV1LIUgvB7_9xPmOPxnHPuQAA_ZCdgc4-CXDO3AeM2PfUFxubsC-3lF4WWJzU9XZbrKLd-UQ2TZGKrz7tiivnvPU0pGK9w2HI3CqlfPVhKFyIxUfy32f4Nc22rD5mDxz2Iz252xfs85urT-t35fX7t5v16rq0UlepBKpJLZuW17WsEdqmAa07KcE1ltAqh-0yN9yKTikF1CBYKztlbQNLopZgwTbH3C7g3txGf8D4zQT05qcQ4o3BmLztyThEoOwVQmlZdXXbSoWStIYKpM5ftWAXx6zbGL5MNCZz8KOlvseBwjQa0Yiac15nx4I9_wfdhykOudOZkhmqKvhN3WCu7wcXUkQ7h5qV0oI3YqlVpi7_Q-XV0cHbMJDzWf_L8OJosDGMYyR36rviZp4Pc5qPzD67e-jUHqg7kb8GAn4AqC-xpw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924005113</pqid></control><display><type>article</type><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</creator><creatorcontrib>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</creatorcontrib><description>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24030716</identifier><identifier>PMID: 38339433</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; CNN ; Computational linguistics ; Convulsions & seizures ; CWT ; Datasets ; Deep learning ; efficient channel attention ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Fourier transforms ; Humans ; Language processing ; Natural language interfaces ; Nervous system diseases ; Neural networks ; Neural Networks, Computer ; seizure detection ; Seizures (Medicine) ; Seizures - diagnosis ; Signal processing ; Support vector machines ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>Sensors (Basel, Switzerland), 2024-01, Vol.24 (3), p.716</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</citedby><cites>FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</cites><orcidid>0000-0002-2604-9692 ; 0000-0001-6903-4434 ; 0000-0002-8685-1003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2924005113/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2924005113?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,36989,44565,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38339433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Nava, Gerardo</creatorcontrib><creatorcontrib>Salazar-Colores, Sebastián</creatorcontrib><creatorcontrib>Cabal-Yepez, Eduardo</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan-Manuel</creatorcontrib><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>CNN</subject><subject>Computational linguistics</subject><subject>Convulsions & seizures</subject><subject>CWT</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>efficient channel attention</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Nervous system diseases</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>seizure detection</subject><subject>Seizures (Medicine)</subject><subject>Seizures - diagnosis</subject><subject>Signal processing</subject><subject>Support vector machines</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk-P0zAQxS0EYpfCgS-AInFZJLI4Hqd2jlVZoNKqIAFna-KMt67SeHEcIfj0OHQpf4R8sP30e2881jD2tOKXAA1_NQrJgatqeY-dV1LIUgvB7_9xPmOPxnHPuQAA_ZCdgc4-CXDO3AeM2PfUFxubsC-3lF4WWJzU9XZbrKLd-UQ2TZGKrz7tiivnvPU0pGK9w2HI3CqlfPVhKFyIxUfy32f4Nc22rD5mDxz2Iz252xfs85urT-t35fX7t5v16rq0UlepBKpJLZuW17WsEdqmAa07KcE1ltAqh-0yN9yKTikF1CBYKztlbQNLopZgwTbH3C7g3txGf8D4zQT05qcQ4o3BmLztyThEoOwVQmlZdXXbSoWStIYKpM5ftWAXx6zbGL5MNCZz8KOlvseBwjQa0Yiac15nx4I9_wfdhykOudOZkhmqKvhN3WCu7wcXUkQ7h5qV0oI3YqlVpi7_Q-XV0cHbMJDzWf_L8OJosDGMYyR36rviZp4Pc5qPzD67e-jUHqg7kb8GAn4AqC-xpw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Hernández-Nava, Gerardo</creator><creator>Salazar-Colores, Sebastián</creator><creator>Cabal-Yepez, Eduardo</creator><creator>Ramos-Arreguín, Juan-Manuel</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2604-9692</orcidid><orcidid>https://orcid.org/0000-0001-6903-4434</orcidid><orcidid>https://orcid.org/0000-0002-8685-1003</orcidid></search><sort><creationdate>20240101</creationdate><title>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</title><author>Hernández-Nava, Gerardo ; Salazar-Colores, Sebastián ; Cabal-Yepez, Eduardo ; Ramos-Arreguín, Juan-Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>CNN</topic><topic>Computational linguistics</topic><topic>Convulsions & seizures</topic><topic>CWT</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>efficient channel attention</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Nervous system diseases</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>seizure detection</topic><topic>Seizures (Medicine)</topic><topic>Seizures - diagnosis</topic><topic>Signal processing</topic><topic>Support vector machines</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Nava, Gerardo</creatorcontrib><creatorcontrib>Salazar-Colores, Sebastián</creatorcontrib><creatorcontrib>Cabal-Yepez, Eduardo</creatorcontrib><creatorcontrib>Ramos-Arreguín, Juan-Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Nava, Gerardo</au><au>Salazar-Colores, Sebastián</au><au>Cabal-Yepez, Eduardo</au><au>Ramos-Arreguín, Juan-Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>716</spage><pages>716-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Around 70 million people worldwide are affected by epilepsy, a neurological disorder characterized by non-induced seizures that occur at irregular and unpredictable intervals. During an epileptic seizure, transient symptoms emerge as a result of extreme abnormal neural activity. Epilepsy imposes limitations on individuals and has a significant impact on the lives of their families. Therefore, the development of reliable diagnostic tools for the early detection of this condition is considered beneficial to alleviate the social and emotional distress experienced by patients. While the Bonn University dataset contains five collections of EEG data, not many studies specifically focus on subsets D and E. These subsets correspond to EEG recordings from the epileptogenic zone during ictal and interictal events. In this work, the parallel ictal-net (PIN) neural network architecture is introduced, which utilizes scalograms obtained through a continuous wavelet transform to achieve the high-accuracy classification of EEG signals into ictal or interictal states. The results obtained demonstrate the effectiveness of the proposed PIN model in distinguishing between ictal and interictal events with a high degree of confidence. This is validated by the computing accuracy, precision, recall, and F1 scores, all of which consistently achieve around 99% confidence, surpassing previous approaches in the related literature.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38339433</pmid><doi>10.3390/s24030716</doi><orcidid>https://orcid.org/0000-0002-2604-9692</orcidid><orcidid>https://orcid.org/0000-0001-6903-4434</orcidid><orcidid>https://orcid.org/0000-0002-8685-1003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-01, Vol.24 (3), p.716 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_faa3ed7c227841d5bb47a4e883134802 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Accuracy Algorithms Artificial intelligence Classification CNN Computational linguistics Convulsions & seizures CWT Datasets Deep learning efficient channel attention Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis Fourier transforms Humans Language processing Natural language interfaces Nervous system diseases Neural networks Neural Networks, Computer seizure detection Seizures (Medicine) Seizures - diagnosis Signal processing Support vector machines Wavelet Analysis Wavelet transforms |
title | Parallel Ictal-Net, a Parallel CNN Architecture with Efficient Channel Attention for Seizure Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Ictal-Net,%20a%20Parallel%20CNN%20Architecture%20with%20Efficient%20Channel%20Attention%20for%20Seizure%20Detection&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Hern%C3%A1ndez-Nava,%20Gerardo&rft.date=2024-01-01&rft.volume=24&rft.issue=3&rft.spage=716&rft.pages=716-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24030716&rft_dat=%3Cgale_doaj_%3EA782092687%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-3e5e769b05545a3b99388d443f9ceac7fab6390b2d7773e9a3cc4d7cc936eebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2924005113&rft_id=info:pmid/38339433&rft_galeid=A782092687&rfr_iscdi=true |