Loading…
An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation
The centrosome lacks microtubule (MT)-nucleation activity in differentiated neurons. We have previously demonstrated that MTs were nucleated at the cytoplasm of mouse neurons. They are supposed to serve seeds for MTs required for dendrite growth. However, the factors that activate the cytoplasmic γ-...
Saved in:
Published in: | IBRO neuroscience reports 2022-12, Vol.13, p.264-273 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The centrosome lacks microtubule (MT)-nucleation activity in differentiated neurons. We have previously demonstrated that MTs were nucleated at the cytoplasm of mouse neurons. They are supposed to serve seeds for MTs required for dendrite growth. However, the factors that activate the cytoplasmic γ-tubulin ring complex (γTuRC) are unknown. Here we report an alternative splicing isoform of cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CKD5RAP2) as a candidate for the cytoplasmic γTuRC activator. This isoform lacked exon 17 and was expressed predominantly in the brain and testis. The expression was transient during the development of cortical neurons, which period coincided with the period we reported cytoplasmic MT nucleation. This isoform resulted in a frameshift and generated truncated protein without a centrosomal localization signal. When this isoform was expressed in cells, it localized diffusely in the cytoplasm. It was co-immunoprecipitated with γ-tubulin and MOZART2, suggesting that it can activate cytosolic γTuRCs. After cold-nocodazole depolymerization of MTs and subsequent washout, we observed numerous short MTs in the cytoplasm of cells transfected with the cDNA of this isoform. The isoform-overexpressing cells exhibited an increased amount of MTs and a decreased ratio of acetylated tubulin, suggesting that MT generation and turnover were enhanced by the isoform. Our data suggest the possibility that alternative splicing of CDK5RAP2 induces cytoplasmic nucleation of MTs in developing neurons.
[Display omitted]
•Developing cortical neurons transiently express an alternative splicing isoform of CDK5RAP2.•This isoform was localized at the cytoplasm and associated with γTuRCs.•This isoform induced nucleation of microtubules at the cytoplasm.•We propose that this isoform generates microtubule seeds to grow dendrites. |
---|---|
ISSN: | 2667-2421 2667-2421 |
DOI: | 10.1016/j.ibneur.2022.09.004 |