Loading…

Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography

3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this stu...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-10, Vol.10 (20), p.7138
Main Authors: Safonov, Alexander, Maltsev, Evgenii, Chugunov, Svyatoslav, Tikhonov, Andrey, Konev, Stepan, Evlashin, Stanislav, Popov, Dmitry, Pasko, Alexander, Akhatov, Iskander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3
cites cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3
container_end_page
container_issue 20
container_start_page 7138
container_title Applied sciences
container_volume 10
creator Safonov, Alexander
Maltsev, Evgenii
Chugunov, Svyatoslav
Tikhonov, Andrey
Konev, Stepan
Evlashin, Stanislav
Popov, Dmitry
Pasko, Alexander
Akhatov, Iskander
description 3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.
doi_str_mv 10.3390/app10207138
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641751212</galeid><doaj_id>oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d</doaj_id><sourcerecordid>A641751212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</originalsourceid><addsrcrecordid>eNptUd9rFDEQDqJgOfvkPxDwUbZNNrvJ7mN7tfbgQKH6HGbzYy_HXbImqbT_vaMnpYIzD_Mx-eZj8g0h7zm7EGJkl7AsnLVMcTG8ImcIZCM6rl6_wG_JeSl7hjEii7Mzkm5cCXOkEC29hSkHAzWkSJOn63RcDu6xud_B4ixduwzHYOh1io5u8AliLfRnACpu6NccYg1xptdQkIsCWwSZ3leXXTqEuktzhmX39I688XAo7vxvXZHvt5--re-a7ZfPm_XVtjGd4LUZp0kxA1K2yjg5jEKJfjC97wYYuVPST51QfOrBCje5QQ1WGsF5K7hU3nMvVmRz0rUJ9nrJ4Qj5SScI-k8j5VlDrsEcnPZgre2A-UG6znI2oj1guDJW2cFyi1ofTlpLTj8eXKl6nx5yxPV124uOMdFhPrNmQNEQfaoZzDEUo68ket_zFvdbkYv_sDCtQ3PRWh-w_8_Ax9OAyamU7PzzZzjTv--uX9xd_ALAVZ3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534003434</pqid></control><display><type>article</type><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><source>Publicly Available Content Database</source><creator>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</creator><creatorcontrib>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</creatorcontrib><description>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10207138</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Aluminum oxide ; Bone implants ; Bones ; bones implants ; Cancellous bone ; Cell size ; Cellular structure ; Ceramic materials ; Ceramics ; Compression ; Compression tests ; Design ; Fabrication ; Function Representation (FRep) method ; Geometry ; Hole defects ; Lasers ; Lithography ; Mechanical properties ; Methods ; Microstructure ; Pore size ; Rapid prototyping ; Raw materials ; Stereolithography ; Transplants &amp; implants ; Unit cell</subject><ispartof>Applied sciences, 2020-10, Vol.10 (20), p.7138</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</citedby><cites>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</cites><orcidid>0000-0002-5031-9058 ; 0000-0003-4772-2302 ; 0000-0002-0670-8152 ; 0000-0003-3372-5393 ; 0000-0002-4785-7066 ; 0000-0002-6081-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534003434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534003434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Safonov, Alexander</creatorcontrib><creatorcontrib>Maltsev, Evgenii</creatorcontrib><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Tikhonov, Andrey</creatorcontrib><creatorcontrib>Konev, Stepan</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Pasko, Alexander</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><title>Applied sciences</title><description>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Aluminum oxide</subject><subject>Bone implants</subject><subject>Bones</subject><subject>bones implants</subject><subject>Cancellous bone</subject><subject>Cell size</subject><subject>Cellular structure</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Design</subject><subject>Fabrication</subject><subject>Function Representation (FRep) method</subject><subject>Geometry</subject><subject>Hole defects</subject><subject>Lasers</subject><subject>Lithography</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Pore size</subject><subject>Rapid prototyping</subject><subject>Raw materials</subject><subject>Stereolithography</subject><subject>Transplants &amp; implants</subject><subject>Unit cell</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUd9rFDEQDqJgOfvkPxDwUbZNNrvJ7mN7tfbgQKH6HGbzYy_HXbImqbT_vaMnpYIzD_Mx-eZj8g0h7zm7EGJkl7AsnLVMcTG8ImcIZCM6rl6_wG_JeSl7hjEii7Mzkm5cCXOkEC29hSkHAzWkSJOn63RcDu6xud_B4ixduwzHYOh1io5u8AliLfRnACpu6NccYg1xptdQkIsCWwSZ3leXXTqEuktzhmX39I688XAo7vxvXZHvt5--re-a7ZfPm_XVtjGd4LUZp0kxA1K2yjg5jEKJfjC97wYYuVPST51QfOrBCje5QQ1WGsF5K7hU3nMvVmRz0rUJ9nrJ4Qj5SScI-k8j5VlDrsEcnPZgre2A-UG6znI2oj1guDJW2cFyi1ofTlpLTj8eXKl6nx5yxPV124uOMdFhPrNmQNEQfaoZzDEUo68ket_zFvdbkYv_sDCtQ3PRWh-w_8_Ax9OAyamU7PzzZzjTv--uX9xd_ALAVZ3k</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Safonov, Alexander</creator><creator>Maltsev, Evgenii</creator><creator>Chugunov, Svyatoslav</creator><creator>Tikhonov, Andrey</creator><creator>Konev, Stepan</creator><creator>Evlashin, Stanislav</creator><creator>Popov, Dmitry</creator><creator>Pasko, Alexander</creator><creator>Akhatov, Iskander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5031-9058</orcidid><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><orcidid>https://orcid.org/0000-0003-3372-5393</orcidid><orcidid>https://orcid.org/0000-0002-4785-7066</orcidid><orcidid>https://orcid.org/0000-0002-6081-321X</orcidid></search><sort><creationdate>20201015</creationdate><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><author>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Aluminum oxide</topic><topic>Bone implants</topic><topic>Bones</topic><topic>bones implants</topic><topic>Cancellous bone</topic><topic>Cell size</topic><topic>Cellular structure</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Design</topic><topic>Fabrication</topic><topic>Function Representation (FRep) method</topic><topic>Geometry</topic><topic>Hole defects</topic><topic>Lasers</topic><topic>Lithography</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Pore size</topic><topic>Rapid prototyping</topic><topic>Raw materials</topic><topic>Stereolithography</topic><topic>Transplants &amp; implants</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safonov, Alexander</creatorcontrib><creatorcontrib>Maltsev, Evgenii</creatorcontrib><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Tikhonov, Andrey</creatorcontrib><creatorcontrib>Konev, Stepan</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Pasko, Alexander</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safonov, Alexander</au><au>Maltsev, Evgenii</au><au>Chugunov, Svyatoslav</au><au>Tikhonov, Andrey</au><au>Konev, Stepan</au><au>Evlashin, Stanislav</au><au>Popov, Dmitry</au><au>Pasko, Alexander</au><au>Akhatov, Iskander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</atitle><jtitle>Applied sciences</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><spage>7138</spage><pages>7138-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10207138</doi><orcidid>https://orcid.org/0000-0002-5031-9058</orcidid><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><orcidid>https://orcid.org/0000-0003-3372-5393</orcidid><orcidid>https://orcid.org/0000-0002-4785-7066</orcidid><orcidid>https://orcid.org/0000-0002-6081-321X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-10, Vol.10 (20), p.7138
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d
source Publicly Available Content Database
subjects 3-D printers
3D printing
Aluminum oxide
Bone implants
Bones
bones implants
Cancellous bone
Cell size
Cellular structure
Ceramic materials
Ceramics
Compression
Compression tests
Design
Fabrication
Function Representation (FRep) method
Geometry
Hole defects
Lasers
Lithography
Mechanical properties
Methods
Microstructure
Pore size
Rapid prototyping
Raw materials
Stereolithography
Transplants & implants
Unit cell
title Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20Complex-Shaped%20Ceramic%20Bone%20Implants%20via%203D%20Printing%20Based%20on%20Laser%20Stereolithography&rft.jtitle=Applied%20sciences&rft.au=Safonov,%20Alexander&rft.date=2020-10-15&rft.volume=10&rft.issue=20&rft.spage=7138&rft.pages=7138-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10207138&rft_dat=%3Cgale_doaj_%3EA641751212%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534003434&rft_id=info:pmid/&rft_galeid=A641751212&rfr_iscdi=true