Loading…
Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography
3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this stu...
Saved in:
Published in: | Applied sciences 2020-10, Vol.10 (20), p.7138 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3 |
container_end_page | |
container_issue | 20 |
container_start_page | 7138 |
container_title | Applied sciences |
container_volume | 10 |
creator | Safonov, Alexander Maltsev, Evgenii Chugunov, Svyatoslav Tikhonov, Andrey Konev, Stepan Evlashin, Stanislav Popov, Dmitry Pasko, Alexander Akhatov, Iskander |
description | 3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier. |
doi_str_mv | 10.3390/app10207138 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641751212</galeid><doaj_id>oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d</doaj_id><sourcerecordid>A641751212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</originalsourceid><addsrcrecordid>eNptUd9rFDEQDqJgOfvkPxDwUbZNNrvJ7mN7tfbgQKH6HGbzYy_HXbImqbT_vaMnpYIzD_Mx-eZj8g0h7zm7EGJkl7AsnLVMcTG8ImcIZCM6rl6_wG_JeSl7hjEii7Mzkm5cCXOkEC29hSkHAzWkSJOn63RcDu6xud_B4ixduwzHYOh1io5u8AliLfRnACpu6NccYg1xptdQkIsCWwSZ3leXXTqEuktzhmX39I688XAo7vxvXZHvt5--re-a7ZfPm_XVtjGd4LUZp0kxA1K2yjg5jEKJfjC97wYYuVPST51QfOrBCje5QQ1WGsF5K7hU3nMvVmRz0rUJ9nrJ4Qj5SScI-k8j5VlDrsEcnPZgre2A-UG6znI2oj1guDJW2cFyi1ofTlpLTj8eXKl6nx5yxPV124uOMdFhPrNmQNEQfaoZzDEUo68ket_zFvdbkYv_sDCtQ3PRWh-w_8_Ax9OAyamU7PzzZzjTv--uX9xd_ALAVZ3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534003434</pqid></control><display><type>article</type><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><source>Publicly Available Content Database</source><creator>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</creator><creatorcontrib>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</creatorcontrib><description>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10207138</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Aluminum oxide ; Bone implants ; Bones ; bones implants ; Cancellous bone ; Cell size ; Cellular structure ; Ceramic materials ; Ceramics ; Compression ; Compression tests ; Design ; Fabrication ; Function Representation (FRep) method ; Geometry ; Hole defects ; Lasers ; Lithography ; Mechanical properties ; Methods ; Microstructure ; Pore size ; Rapid prototyping ; Raw materials ; Stereolithography ; Transplants & implants ; Unit cell</subject><ispartof>Applied sciences, 2020-10, Vol.10 (20), p.7138</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</citedby><cites>FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</cites><orcidid>0000-0002-5031-9058 ; 0000-0003-4772-2302 ; 0000-0002-0670-8152 ; 0000-0003-3372-5393 ; 0000-0002-4785-7066 ; 0000-0002-6081-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2534003434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2534003434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Safonov, Alexander</creatorcontrib><creatorcontrib>Maltsev, Evgenii</creatorcontrib><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Tikhonov, Andrey</creatorcontrib><creatorcontrib>Konev, Stepan</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Pasko, Alexander</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><title>Applied sciences</title><description>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Aluminum oxide</subject><subject>Bone implants</subject><subject>Bones</subject><subject>bones implants</subject><subject>Cancellous bone</subject><subject>Cell size</subject><subject>Cellular structure</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Design</subject><subject>Fabrication</subject><subject>Function Representation (FRep) method</subject><subject>Geometry</subject><subject>Hole defects</subject><subject>Lasers</subject><subject>Lithography</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Pore size</subject><subject>Rapid prototyping</subject><subject>Raw materials</subject><subject>Stereolithography</subject><subject>Transplants & implants</subject><subject>Unit cell</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUd9rFDEQDqJgOfvkPxDwUbZNNrvJ7mN7tfbgQKH6HGbzYy_HXbImqbT_vaMnpYIzD_Mx-eZj8g0h7zm7EGJkl7AsnLVMcTG8ImcIZCM6rl6_wG_JeSl7hjEii7Mzkm5cCXOkEC29hSkHAzWkSJOn63RcDu6xud_B4ixduwzHYOh1io5u8AliLfRnACpu6NccYg1xptdQkIsCWwSZ3leXXTqEuktzhmX39I688XAo7vxvXZHvt5--re-a7ZfPm_XVtjGd4LUZp0kxA1K2yjg5jEKJfjC97wYYuVPST51QfOrBCje5QQ1WGsF5K7hU3nMvVmRz0rUJ9nrJ4Qj5SScI-k8j5VlDrsEcnPZgre2A-UG6znI2oj1guDJW2cFyi1ofTlpLTj8eXKl6nx5yxPV124uOMdFhPrNmQNEQfaoZzDEUo68ket_zFvdbkYv_sDCtQ3PRWh-w_8_Ax9OAyamU7PzzZzjTv--uX9xd_ALAVZ3k</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Safonov, Alexander</creator><creator>Maltsev, Evgenii</creator><creator>Chugunov, Svyatoslav</creator><creator>Tikhonov, Andrey</creator><creator>Konev, Stepan</creator><creator>Evlashin, Stanislav</creator><creator>Popov, Dmitry</creator><creator>Pasko, Alexander</creator><creator>Akhatov, Iskander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5031-9058</orcidid><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><orcidid>https://orcid.org/0000-0003-3372-5393</orcidid><orcidid>https://orcid.org/0000-0002-4785-7066</orcidid><orcidid>https://orcid.org/0000-0002-6081-321X</orcidid></search><sort><creationdate>20201015</creationdate><title>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</title><author>Safonov, Alexander ; Maltsev, Evgenii ; Chugunov, Svyatoslav ; Tikhonov, Andrey ; Konev, Stepan ; Evlashin, Stanislav ; Popov, Dmitry ; Pasko, Alexander ; Akhatov, Iskander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Aluminum oxide</topic><topic>Bone implants</topic><topic>Bones</topic><topic>bones implants</topic><topic>Cancellous bone</topic><topic>Cell size</topic><topic>Cellular structure</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Design</topic><topic>Fabrication</topic><topic>Function Representation (FRep) method</topic><topic>Geometry</topic><topic>Hole defects</topic><topic>Lasers</topic><topic>Lithography</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Pore size</topic><topic>Rapid prototyping</topic><topic>Raw materials</topic><topic>Stereolithography</topic><topic>Transplants & implants</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safonov, Alexander</creatorcontrib><creatorcontrib>Maltsev, Evgenii</creatorcontrib><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Tikhonov, Andrey</creatorcontrib><creatorcontrib>Konev, Stepan</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Popov, Dmitry</creatorcontrib><creatorcontrib>Pasko, Alexander</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safonov, Alexander</au><au>Maltsev, Evgenii</au><au>Chugunov, Svyatoslav</au><au>Tikhonov, Andrey</au><au>Konev, Stepan</au><au>Evlashin, Stanislav</au><au>Popov, Dmitry</au><au>Pasko, Alexander</au><au>Akhatov, Iskander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography</atitle><jtitle>Applied sciences</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>10</volume><issue>20</issue><spage>7138</spage><pages>7138-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>3D printing allows the fabrication of ceramic implants, making a personalized approach to patients’ treatment a reality. In this work, we have tested the applicability of the Function Representation (FRep) method for geometric simulation of implants with complex cellular microstructure. For this study, we have built several parametric 3D models of 4 mm diameter cylindrical bone implant specimens of four different types of cellular structure. The 9.5 mm long implants are designed to fill hole defects in the trabecular bone. Specimens of designed ceramic implants were fabricated at a Ceramaker 900 stereolithographic 3D printer, using a commercial 3D Mix alumina (Al2O3) ceramic paste. Then, a single-axis compression test was performed on fabricated specimens. According to the test results, the maximum load for tested specimens constituted from 93.0 to 817.5 N, depending on the size of the unit cell and the thickness of the ribs. This demonstrates the possibility of fabricating implants for a wide range of loads, making the choice of the right structure for each patient much easier.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10207138</doi><orcidid>https://orcid.org/0000-0002-5031-9058</orcidid><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><orcidid>https://orcid.org/0000-0003-3372-5393</orcidid><orcidid>https://orcid.org/0000-0002-4785-7066</orcidid><orcidid>https://orcid.org/0000-0002-6081-321X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-10, Vol.10 (20), p.7138 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_faddd4a0f86e4d109000ac17cd7d8d1d |
source | Publicly Available Content Database |
subjects | 3-D printers 3D printing Aluminum oxide Bone implants Bones bones implants Cancellous bone Cell size Cellular structure Ceramic materials Ceramics Compression Compression tests Design Fabrication Function Representation (FRep) method Geometry Hole defects Lasers Lithography Mechanical properties Methods Microstructure Pore size Rapid prototyping Raw materials Stereolithography Transplants & implants Unit cell |
title | Design and Fabrication of Complex-Shaped Ceramic Bone Implants via 3D Printing Based on Laser Stereolithography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20Complex-Shaped%20Ceramic%20Bone%20Implants%20via%203D%20Printing%20Based%20on%20Laser%20Stereolithography&rft.jtitle=Applied%20sciences&rft.au=Safonov,%20Alexander&rft.date=2020-10-15&rft.volume=10&rft.issue=20&rft.spage=7138&rft.pages=7138-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10207138&rft_dat=%3Cgale_doaj_%3EA641751212%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-9bb70ca6627ce68937358c5f48a91e76fb4371b5ad3ebe878d6c31123167ff1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2534003434&rft_id=info:pmid/&rft_galeid=A641751212&rfr_iscdi=true |