Loading…

An Infrared Sequence Image Generating Method for Target Detection and Tracking

Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in computational neuroscience 2022-07, Vol.16, p.930827-930827
Main Authors: Zhijian, Huang, Bingwei, Hui, Shujin, Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63
cites cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63
container_end_page 930827
container_issue
container_start_page 930827
container_title Frontiers in computational neuroscience
container_volume 16
creator Zhijian, Huang
Bingwei, Hui
Shujin, Sun
description Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.
doi_str_mv 10.3389/fncom.2022.930827
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011</doaj_id><sourcerecordid>2689950022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</originalsourceid><addsrcrecordid>eNpdkctuEzEUQC0EoqXwAewssWGT4Mf4tUGqWiiRCiwIa-vGcz2dMGMXj4PE3-M2FaKsbNlHx9Y9hLzmbC2lde9iCnleCybE2klmhXlCTrnWYqW4tU__2Z-QF8uyZ0wLrdhzciKV46xT7JR8OU90k2KBgj39hj8PmALSzQwD0itMWKCOaaCfsd7knsZc6BbKgJVeYsVQx5wopJ5uC4QfDXxJnkWYFnz1sJ6R7x8_bC8-ra6_Xm0uzq9XoTOsrvqgpBbMdUEYwSWPxnBllNY2xA53EZzaqcAlRMl5FAjKMGTSAvQGbdTyjGyO3j7D3t-WcYby22cY_f1BLoOHUscwoY_Q9yi7oIXVnQvtCcEBI-64QME4b673R9ftYTdjHzDVAtMj6eObNN74If_yTkolnGqCtw-CktsAl-rncQk4TZAwHxYvtDPMcatdQ9_8h-7zoaQ2qkZZ5xRrMRvFj1QoeVkKxr-f4czflff35f1deX8sL_8A79mgTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689950022</pqid></control><display><type>article</type><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><source>PubMed Central</source><creator>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</creator><creatorcontrib>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</creatorcontrib><description>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2022.930827</identifier><identifier>PMID: 35910450</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Aircraft ; Attitudes ; Authenticity ; Deep learning ; Editing ; Heat ; infrared image simulation ; Infrared radiation ; infrared target simulation ; Methods ; Neuroscience ; Simulation ; Skin ; Unity3D</subject><ispartof>Frontiers in computational neuroscience, 2022-07, Vol.16, p.930827-930827</ispartof><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022 Zhijian, Bingwei and Shujin. 2022 Zhijian, Bingwei and Shujin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</citedby><cites>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhijian, Huang</creatorcontrib><creatorcontrib>Bingwei, Hui</creatorcontrib><creatorcontrib>Shujin, Sun</creatorcontrib><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><title>Frontiers in computational neuroscience</title><description>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</description><subject>Aircraft</subject><subject>Attitudes</subject><subject>Authenticity</subject><subject>Deep learning</subject><subject>Editing</subject><subject>Heat</subject><subject>infrared image simulation</subject><subject>Infrared radiation</subject><subject>infrared target simulation</subject><subject>Methods</subject><subject>Neuroscience</subject><subject>Simulation</subject><subject>Skin</subject><subject>Unity3D</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctuEzEUQC0EoqXwAewssWGT4Mf4tUGqWiiRCiwIa-vGcz2dMGMXj4PE3-M2FaKsbNlHx9Y9hLzmbC2lde9iCnleCybE2klmhXlCTrnWYqW4tU__2Z-QF8uyZ0wLrdhzciKV46xT7JR8OU90k2KBgj39hj8PmALSzQwD0itMWKCOaaCfsd7knsZc6BbKgJVeYsVQx5wopJ5uC4QfDXxJnkWYFnz1sJ6R7x8_bC8-ra6_Xm0uzq9XoTOsrvqgpBbMdUEYwSWPxnBllNY2xA53EZzaqcAlRMl5FAjKMGTSAvQGbdTyjGyO3j7D3t-WcYby22cY_f1BLoOHUscwoY_Q9yi7oIXVnQvtCcEBI-64QME4b673R9ftYTdjHzDVAtMj6eObNN74If_yTkolnGqCtw-CktsAl-rncQk4TZAwHxYvtDPMcatdQ9_8h-7zoaQ2qkZZ5xRrMRvFj1QoeVkKxr-f4czflff35f1deX8sL_8A79mgTg</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Zhijian, Huang</creator><creator>Bingwei, Hui</creator><creator>Shujin, Sun</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220715</creationdate><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><author>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Attitudes</topic><topic>Authenticity</topic><topic>Deep learning</topic><topic>Editing</topic><topic>Heat</topic><topic>infrared image simulation</topic><topic>Infrared radiation</topic><topic>infrared target simulation</topic><topic>Methods</topic><topic>Neuroscience</topic><topic>Simulation</topic><topic>Skin</topic><topic>Unity3D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhijian, Huang</creatorcontrib><creatorcontrib>Bingwei, Hui</creatorcontrib><creatorcontrib>Shujin, Sun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhijian, Huang</au><au>Bingwei, Hui</au><au>Shujin, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Infrared Sequence Image Generating Method for Target Detection and Tracking</atitle><jtitle>Frontiers in computational neuroscience</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>16</volume><spage>930827</spage><epage>930827</epage><pages>930827-930827</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><pmid>35910450</pmid><doi>10.3389/fncom.2022.930827</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5188
ispartof Frontiers in computational neuroscience, 2022-07, Vol.16, p.930827-930827
issn 1662-5188
1662-5188
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011
source PubMed Central
subjects Aircraft
Attitudes
Authenticity
Deep learning
Editing
Heat
infrared image simulation
Infrared radiation
infrared target simulation
Methods
Neuroscience
Simulation
Skin
Unity3D
title An Infrared Sequence Image Generating Method for Target Detection and Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Infrared%20Sequence%20Image%20Generating%20Method%20for%20Target%20Detection%20and%20Tracking&rft.jtitle=Frontiers%20in%20computational%20neuroscience&rft.au=Zhijian,%20Huang&rft.date=2022-07-15&rft.volume=16&rft.spage=930827&rft.epage=930827&rft.pages=930827-930827&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2022.930827&rft_dat=%3Cproquest_doaj_%3E2689950022%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689950022&rft_id=info:pmid/35910450&rfr_iscdi=true