Loading…
An Infrared Sequence Image Generating Method for Target Detection and Tracking
Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data...
Saved in:
Published in: | Frontiers in computational neuroscience 2022-07, Vol.16, p.930827-930827 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63 |
container_end_page | 930827 |
container_issue | |
container_start_page | 930827 |
container_title | Frontiers in computational neuroscience |
container_volume | 16 |
creator | Zhijian, Huang Bingwei, Hui Shujin, Sun |
description | Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking. |
doi_str_mv | 10.3389/fncom.2022.930827 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011</doaj_id><sourcerecordid>2689950022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</originalsourceid><addsrcrecordid>eNpdkctuEzEUQC0EoqXwAewssWGT4Mf4tUGqWiiRCiwIa-vGcz2dMGMXj4PE3-M2FaKsbNlHx9Y9hLzmbC2lde9iCnleCybE2klmhXlCTrnWYqW4tU__2Z-QF8uyZ0wLrdhzciKV46xT7JR8OU90k2KBgj39hj8PmALSzQwD0itMWKCOaaCfsd7knsZc6BbKgJVeYsVQx5wopJ5uC4QfDXxJnkWYFnz1sJ6R7x8_bC8-ra6_Xm0uzq9XoTOsrvqgpBbMdUEYwSWPxnBllNY2xA53EZzaqcAlRMl5FAjKMGTSAvQGbdTyjGyO3j7D3t-WcYby22cY_f1BLoOHUscwoY_Q9yi7oIXVnQvtCcEBI-64QME4b673R9ftYTdjHzDVAtMj6eObNN74If_yTkolnGqCtw-CktsAl-rncQk4TZAwHxYvtDPMcatdQ9_8h-7zoaQ2qkZZ5xRrMRvFj1QoeVkKxr-f4czflff35f1deX8sL_8A79mgTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689950022</pqid></control><display><type>article</type><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><source>PubMed Central</source><creator>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</creator><creatorcontrib>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</creatorcontrib><description>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</description><identifier>ISSN: 1662-5188</identifier><identifier>EISSN: 1662-5188</identifier><identifier>DOI: 10.3389/fncom.2022.930827</identifier><identifier>PMID: 35910450</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Aircraft ; Attitudes ; Authenticity ; Deep learning ; Editing ; Heat ; infrared image simulation ; Infrared radiation ; infrared target simulation ; Methods ; Neuroscience ; Simulation ; Skin ; Unity3D</subject><ispartof>Frontiers in computational neuroscience, 2022-07, Vol.16, p.930827-930827</ispartof><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2022 Zhijian, Bingwei and Shujin. 2022 Zhijian, Bingwei and Shujin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</citedby><cites>FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335295/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhijian, Huang</creatorcontrib><creatorcontrib>Bingwei, Hui</creatorcontrib><creatorcontrib>Shujin, Sun</creatorcontrib><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><title>Frontiers in computational neuroscience</title><description>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</description><subject>Aircraft</subject><subject>Attitudes</subject><subject>Authenticity</subject><subject>Deep learning</subject><subject>Editing</subject><subject>Heat</subject><subject>infrared image simulation</subject><subject>Infrared radiation</subject><subject>infrared target simulation</subject><subject>Methods</subject><subject>Neuroscience</subject><subject>Simulation</subject><subject>Skin</subject><subject>Unity3D</subject><issn>1662-5188</issn><issn>1662-5188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctuEzEUQC0EoqXwAewssWGT4Mf4tUGqWiiRCiwIa-vGcz2dMGMXj4PE3-M2FaKsbNlHx9Y9hLzmbC2lde9iCnleCybE2klmhXlCTrnWYqW4tU__2Z-QF8uyZ0wLrdhzciKV46xT7JR8OU90k2KBgj39hj8PmALSzQwD0itMWKCOaaCfsd7knsZc6BbKgJVeYsVQx5wopJ5uC4QfDXxJnkWYFnz1sJ6R7x8_bC8-ra6_Xm0uzq9XoTOsrvqgpBbMdUEYwSWPxnBllNY2xA53EZzaqcAlRMl5FAjKMGTSAvQGbdTyjGyO3j7D3t-WcYby22cY_f1BLoOHUscwoY_Q9yi7oIXVnQvtCcEBI-64QME4b673R9ftYTdjHzDVAtMj6eObNN74If_yTkolnGqCtw-CktsAl-rncQk4TZAwHxYvtDPMcatdQ9_8h-7zoaQ2qkZZ5xRrMRvFj1QoeVkKxr-f4czflff35f1deX8sL_8A79mgTg</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Zhijian, Huang</creator><creator>Bingwei, Hui</creator><creator>Shujin, Sun</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220715</creationdate><title>An Infrared Sequence Image Generating Method for Target Detection and Tracking</title><author>Zhijian, Huang ; Bingwei, Hui ; Shujin, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Attitudes</topic><topic>Authenticity</topic><topic>Deep learning</topic><topic>Editing</topic><topic>Heat</topic><topic>infrared image simulation</topic><topic>Infrared radiation</topic><topic>infrared target simulation</topic><topic>Methods</topic><topic>Neuroscience</topic><topic>Simulation</topic><topic>Skin</topic><topic>Unity3D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhijian, Huang</creatorcontrib><creatorcontrib>Bingwei, Hui</creatorcontrib><creatorcontrib>Shujin, Sun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhijian, Huang</au><au>Bingwei, Hui</au><au>Shujin, Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Infrared Sequence Image Generating Method for Target Detection and Tracking</atitle><jtitle>Frontiers in computational neuroscience</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>16</volume><spage>930827</spage><epage>930827</epage><pages>930827-930827</pages><issn>1662-5188</issn><eissn>1662-5188</eissn><abstract>Training infrared target detection and tracking models based on deep learning requires a large number of infrared sequence images. The cost of acquisition real infrared target sequence images is high, while conventional simulation methods lack authenticity. This paper proposes a novel infrared data simulation method that combines real infrared images and simulated 3D infrared targets. Firstly, it stitches real infrared images into a panoramic image which is used as background. Then, the infrared characteristics of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as targets. Finally, the background and targets are fused based on Unity3D, where the aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared data. The experimental results show that the simulated image is not only visually similar to the real infrared image but also consistent with the real infrared image in terms of the performance of target detection algorithms. The method can provide training and testing samples for deep learning models for infrared target detection and tracking.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><pmid>35910450</pmid><doi>10.3389/fncom.2022.930827</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5188 |
ispartof | Frontiers in computational neuroscience, 2022-07, Vol.16, p.930827-930827 |
issn | 1662-5188 1662-5188 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fadde34c628649c68c21aefeb12e2011 |
source | PubMed Central |
subjects | Aircraft Attitudes Authenticity Deep learning Editing Heat infrared image simulation Infrared radiation infrared target simulation Methods Neuroscience Simulation Skin Unity3D |
title | An Infrared Sequence Image Generating Method for Target Detection and Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Infrared%20Sequence%20Image%20Generating%20Method%20for%20Target%20Detection%20and%20Tracking&rft.jtitle=Frontiers%20in%20computational%20neuroscience&rft.au=Zhijian,%20Huang&rft.date=2022-07-15&rft.volume=16&rft.spage=930827&rft.epage=930827&rft.pages=930827-930827&rft.issn=1662-5188&rft.eissn=1662-5188&rft_id=info:doi/10.3389/fncom.2022.930827&rft_dat=%3Cproquest_doaj_%3E2689950022%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-dc5362094c272131f771575668cf4ebfa95b5c13af311f2ea570e038aad7e8f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689950022&rft_id=info:pmid/35910450&rfr_iscdi=true |