Loading…
The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions
In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one soluti...
Saved in:
Published in: | Fractal and fractional 2023-12, Vol.7 (12), p.837 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93 |
container_end_page | |
container_issue | 12 |
container_start_page | 837 |
container_title | Fractal and fractional |
container_volume | 7 |
creator | Ali Khan, Haroon Niaz Zada, Akbar Popa, Ioan-Lucian Ben Moussa, Sana |
description | In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented. |
doi_str_mv | 10.3390/fractalfract7120837 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6</doaj_id><sourcerecordid>2904694147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</originalsourceid><addsrcrecordid>eNptkc9OHDEMxkdVkYqAJ-glUs9D828nk2O7KrDSSkViOUeexIGsspNpMgOCJ-DteKXOslXFgdNn2Z9_tuyq-srouRCafvcZ7AjxTRTjtBXqU3XMF1TWgjH6-V38pTorZUsp5UqLBVXH1bC5R7LaDVMs4QHJMk1DREfW0N_hQ-jJ60u9hGEaE7nY80PqIZLrnLqIO_IYxntyE8NY34w5DPUl9pghhmd09eZpQPIzTb2D_DRzexf23eW0OvIQC57905Pq9uLXZnlVr39frpY_1rUVbTvWiFRLJ3QDSoAD7oGzzluh2kZ33O8rcgHScqRCM9nJRiFaDZaBb2WnxUm1OnBdgq0ZctjNe5gEwbwlUr4zkMdgIxoP2CnVee_bVs6AljtJYeGUk52itplZ3w6sIac_E5bRbNOU50sUwzWVjZZMqtklDi6bUykZ_f-pjJr9p8wHnxJ_AU9yjK4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904694147</pqid></control><display><type>article</type><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</creator><creatorcontrib>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</creatorcontrib><description>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7120837</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Banach spaces ; Boundary conditions ; Brownian motion ; Calculus ; coupled system ; Fixed points (mathematics) ; integro-multipoint–multistrip boundary conditions ; Mathematical functions ; Schaefer’s fixed point theorem ; Strip ; Ulam–Hyers stability ; ψ-Caputo fractional derivative</subject><ispartof>Fractal and fractional, 2023-12, Vol.7 (12), p.837</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</citedby><cites>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</cites><orcidid>0000-0002-4336-3544 ; 0000-0003-3009-4047 ; 0000-0001-8042-1806 ; 0000-0002-2556-2806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904694147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904694147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577,74881</link.rule.ids></links><search><creatorcontrib>Ali Khan, Haroon Niaz</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Ben Moussa, Sana</creatorcontrib><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><title>Fractal and fractional</title><description>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</description><subject>Banach spaces</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Calculus</subject><subject>coupled system</subject><subject>Fixed points (mathematics)</subject><subject>integro-multipoint–multistrip boundary conditions</subject><subject>Mathematical functions</subject><subject>Schaefer’s fixed point theorem</subject><subject>Strip</subject><subject>Ulam–Hyers stability</subject><subject>ψ-Caputo fractional derivative</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9OHDEMxkdVkYqAJ-glUs9D828nk2O7KrDSSkViOUeexIGsspNpMgOCJ-DteKXOslXFgdNn2Z9_tuyq-srouRCafvcZ7AjxTRTjtBXqU3XMF1TWgjH6-V38pTorZUsp5UqLBVXH1bC5R7LaDVMs4QHJMk1DREfW0N_hQ-jJ60u9hGEaE7nY80PqIZLrnLqIO_IYxntyE8NY34w5DPUl9pghhmd09eZpQPIzTb2D_DRzexf23eW0OvIQC57905Pq9uLXZnlVr39frpY_1rUVbTvWiFRLJ3QDSoAD7oGzzluh2kZ33O8rcgHScqRCM9nJRiFaDZaBb2WnxUm1OnBdgq0ZctjNe5gEwbwlUr4zkMdgIxoP2CnVee_bVs6AljtJYeGUk52itplZ3w6sIac_E5bRbNOU50sUwzWVjZZMqtklDi6bUykZ_f-pjJr9p8wHnxJ_AU9yjK4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ali Khan, Haroon Niaz</creator><creator>Zada, Akbar</creator><creator>Popa, Ioan-Lucian</creator><creator>Ben Moussa, Sana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4336-3544</orcidid><orcidid>https://orcid.org/0000-0003-3009-4047</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-2556-2806</orcidid></search><sort><creationdate>20231201</creationdate><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><author>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Calculus</topic><topic>coupled system</topic><topic>Fixed points (mathematics)</topic><topic>integro-multipoint–multistrip boundary conditions</topic><topic>Mathematical functions</topic><topic>Schaefer’s fixed point theorem</topic><topic>Strip</topic><topic>Ulam–Hyers stability</topic><topic>ψ-Caputo fractional derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali Khan, Haroon Niaz</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Ben Moussa, Sana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali Khan, Haroon Niaz</au><au>Zada, Akbar</au><au>Popa, Ioan-Lucian</au><au>Ben Moussa, Sana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</atitle><jtitle>Fractal and fractional</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>7</volume><issue>12</issue><spage>837</spage><pages>837-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract7120837</doi><orcidid>https://orcid.org/0000-0002-4336-3544</orcidid><orcidid>https://orcid.org/0000-0003-3009-4047</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-2556-2806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2023-12, Vol.7 (12), p.837 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6 |
source | Publicly Available Content Database |
subjects | Banach spaces Boundary conditions Brownian motion Calculus coupled system Fixed points (mathematics) integro-multipoint–multistrip boundary conditions Mathematical functions Schaefer’s fixed point theorem Strip Ulam–Hyers stability ψ-Caputo fractional derivative |
title | The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impulsive%20Coupled%20Langevin%20%CF%88-Caputo%20Fractional%20Problem%20with%20Slit-Strip-Generalized-Type%20Boundary%20Conditions&rft.jtitle=Fractal%20and%20fractional&rft.au=Ali%20Khan,%20Haroon%20Niaz&rft.date=2023-12-01&rft.volume=7&rft.issue=12&rft.spage=837&rft.pages=837-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7120837&rft_dat=%3Cproquest_doaj_%3E2904694147%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904694147&rft_id=info:pmid/&rfr_iscdi=true |