Loading…

The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions

In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one soluti...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2023-12, Vol.7 (12), p.837
Main Authors: Ali Khan, Haroon Niaz, Zada, Akbar, Popa, Ioan-Lucian, Ben Moussa, Sana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93
cites cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93
container_end_page
container_issue 12
container_start_page 837
container_title Fractal and fractional
container_volume 7
creator Ali Khan, Haroon Niaz
Zada, Akbar
Popa, Ioan-Lucian
Ben Moussa, Sana
description In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.
doi_str_mv 10.3390/fractalfract7120837
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6</doaj_id><sourcerecordid>2904694147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</originalsourceid><addsrcrecordid>eNptkc9OHDEMxkdVkYqAJ-glUs9D828nk2O7KrDSSkViOUeexIGsspNpMgOCJ-DteKXOslXFgdNn2Z9_tuyq-srouRCafvcZ7AjxTRTjtBXqU3XMF1TWgjH6-V38pTorZUsp5UqLBVXH1bC5R7LaDVMs4QHJMk1DREfW0N_hQ-jJ60u9hGEaE7nY80PqIZLrnLqIO_IYxntyE8NY34w5DPUl9pghhmd09eZpQPIzTb2D_DRzexf23eW0OvIQC57905Pq9uLXZnlVr39frpY_1rUVbTvWiFRLJ3QDSoAD7oGzzluh2kZ33O8rcgHScqRCM9nJRiFaDZaBb2WnxUm1OnBdgq0ZctjNe5gEwbwlUr4zkMdgIxoP2CnVee_bVs6AljtJYeGUk52itplZ3w6sIac_E5bRbNOU50sUwzWVjZZMqtklDi6bUykZ_f-pjJr9p8wHnxJ_AU9yjK4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904694147</pqid></control><display><type>article</type><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</creator><creatorcontrib>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</creatorcontrib><description>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7120837</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Banach spaces ; Boundary conditions ; Brownian motion ; Calculus ; coupled system ; Fixed points (mathematics) ; integro-multipoint–multistrip boundary conditions ; Mathematical functions ; Schaefer’s fixed point theorem ; Strip ; Ulam–Hyers stability ; ψ-Caputo fractional derivative</subject><ispartof>Fractal and fractional, 2023-12, Vol.7 (12), p.837</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</citedby><cites>FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</cites><orcidid>0000-0002-4336-3544 ; 0000-0003-3009-4047 ; 0000-0001-8042-1806 ; 0000-0002-2556-2806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904694147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904694147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25740,27911,27912,36999,44577,74881</link.rule.ids></links><search><creatorcontrib>Ali Khan, Haroon Niaz</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Ben Moussa, Sana</creatorcontrib><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><title>Fractal and fractional</title><description>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</description><subject>Banach spaces</subject><subject>Boundary conditions</subject><subject>Brownian motion</subject><subject>Calculus</subject><subject>coupled system</subject><subject>Fixed points (mathematics)</subject><subject>integro-multipoint–multistrip boundary conditions</subject><subject>Mathematical functions</subject><subject>Schaefer’s fixed point theorem</subject><subject>Strip</subject><subject>Ulam–Hyers stability</subject><subject>ψ-Caputo fractional derivative</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9OHDEMxkdVkYqAJ-glUs9D828nk2O7KrDSSkViOUeexIGsspNpMgOCJ-DteKXOslXFgdNn2Z9_tuyq-srouRCafvcZ7AjxTRTjtBXqU3XMF1TWgjH6-V38pTorZUsp5UqLBVXH1bC5R7LaDVMs4QHJMk1DREfW0N_hQ-jJ60u9hGEaE7nY80PqIZLrnLqIO_IYxntyE8NY34w5DPUl9pghhmd09eZpQPIzTb2D_DRzexf23eW0OvIQC57905Pq9uLXZnlVr39frpY_1rUVbTvWiFRLJ3QDSoAD7oGzzluh2kZ33O8rcgHScqRCM9nJRiFaDZaBb2WnxUm1OnBdgq0ZctjNe5gEwbwlUr4zkMdgIxoP2CnVee_bVs6AljtJYeGUk52itplZ3w6sIac_E5bRbNOU50sUwzWVjZZMqtklDi6bUykZ_f-pjJr9p8wHnxJ_AU9yjK4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ali Khan, Haroon Niaz</creator><creator>Zada, Akbar</creator><creator>Popa, Ioan-Lucian</creator><creator>Ben Moussa, Sana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4336-3544</orcidid><orcidid>https://orcid.org/0000-0003-3009-4047</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-2556-2806</orcidid></search><sort><creationdate>20231201</creationdate><title>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</title><author>Ali Khan, Haroon Niaz ; Zada, Akbar ; Popa, Ioan-Lucian ; Ben Moussa, Sana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Boundary conditions</topic><topic>Brownian motion</topic><topic>Calculus</topic><topic>coupled system</topic><topic>Fixed points (mathematics)</topic><topic>integro-multipoint–multistrip boundary conditions</topic><topic>Mathematical functions</topic><topic>Schaefer’s fixed point theorem</topic><topic>Strip</topic><topic>Ulam–Hyers stability</topic><topic>ψ-Caputo fractional derivative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali Khan, Haroon Niaz</creatorcontrib><creatorcontrib>Zada, Akbar</creatorcontrib><creatorcontrib>Popa, Ioan-Lucian</creatorcontrib><creatorcontrib>Ben Moussa, Sana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali Khan, Haroon Niaz</au><au>Zada, Akbar</au><au>Popa, Ioan-Lucian</au><au>Ben Moussa, Sana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions</atitle><jtitle>Fractal and fractional</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>7</volume><issue>12</issue><spage>837</spage><pages>837-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>In this paper, the existence of a unique solution is established for a coupled system of Langevin fractional problems of ψ-Caputo fractional derivatives with generalized slit-strip-type integral boundary conditions and impulses using the Banach contraction principle. We also find at least one solution to the aforementioned system using some assumptions and Schaefer’s fixed point theorem. After that, Ulam–Hyers stability is discussed. Finally, to provide additional support for the main results, pertinent examples are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract7120837</doi><orcidid>https://orcid.org/0000-0002-4336-3544</orcidid><orcidid>https://orcid.org/0000-0003-3009-4047</orcidid><orcidid>https://orcid.org/0000-0001-8042-1806</orcidid><orcidid>https://orcid.org/0000-0002-2556-2806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2023-12, Vol.7 (12), p.837
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_faeb77bfff884c1a82d40a5d7d4b70c6
source Publicly Available Content Database
subjects Banach spaces
Boundary conditions
Brownian motion
Calculus
coupled system
Fixed points (mathematics)
integro-multipoint–multistrip boundary conditions
Mathematical functions
Schaefer’s fixed point theorem
Strip
Ulam–Hyers stability
ψ-Caputo fractional derivative
title The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impulsive%20Coupled%20Langevin%20%CF%88-Caputo%20Fractional%20Problem%20with%20Slit-Strip-Generalized-Type%20Boundary%20Conditions&rft.jtitle=Fractal%20and%20fractional&rft.au=Ali%20Khan,%20Haroon%20Niaz&rft.date=2023-12-01&rft.volume=7&rft.issue=12&rft.spage=837&rft.pages=837-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7120837&rft_dat=%3Cproquest_doaj_%3E2904694147%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-ee094d396a73ada2fa21bfc37869b2fd39645a4c2e03914b467eec9ac1af84b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904694147&rft_id=info:pmid/&rfr_iscdi=true