Loading…

The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma

Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish tr...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-06, Vol.19 (11), p.2304-2318
Main Authors: Ignatius, Myron S., Hayes, Madeline N., Lobbardi, Riadh, Chen, Eleanor Y., McCarthy, Karin M., Sreenivas, Prethish, Motala, Zainab, Durbin, Adam D., Molodtsov, Aleksey, Reeder, Sophia, Jin, Alexander, Sindiri, Sivasish, Beleyea, Brian C., Bhere, Deepak, Alexander, Matthew S., Shah, Khalid, Keller, Charles, Linardic, Corinne M., Nielsen, Petur G., Malkin, David, Khan, Javed, Langenau, David M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823
cites cdi_FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823
container_end_page 2318
container_issue 11
container_start_page 2304
container_title Cell reports (Cambridge)
container_volume 19
creator Ignatius, Myron S.
Hayes, Madeline N.
Lobbardi, Riadh
Chen, Eleanor Y.
McCarthy, Karin M.
Sreenivas, Prethish
Motala, Zainab
Durbin, Adam D.
Molodtsov, Aleksey
Reeder, Sophia
Jin, Alexander
Sindiri, Sivasish
Beleyea, Brian C.
Bhere, Deepak
Alexander, Matthew S.
Shah, Khalid
Keller, Charles
Linardic, Corinne M.
Nielsen, Petur G.
Malkin, David
Khan, Javed
Langenau, David M.
description Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. [Display omitted] •NOTCH1 expands the number of tumor-propagating cells (TPCs) in zebrafish and human ERMS•Notch1 drives the de-differentiation of zebrafish ERMS cells into self-renewing TPCs•A NOTCH1/SNAI1 pathway drives self-renewal and blocks MEF2C regulated differentiation•Self-renewal and differentiation pathways are linked and viable therapeutic targets Tumor-propagating cells (TPCs) drive cancer growth, yet mechanisms regulating TPC self-renewal and maintenance are largely unknown. Ignatius et al. show that the NOTCH1/SNAIL1 pathway synergizes with RAS to expand TPCs in embryonal rhabdomyosarcoma. This pathway blocks MEF2C-induced differentiation and enables the de-differentiation of ERMS cells into self-renewing TPCs.
doi_str_mv 10.1016/j.celrep.2017.05.061
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_faebeb2fcd654f42ab17377a17a33471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124717307180</els_id><doaj_id>oai_doaj_org_article_faebeb2fcd654f42ab17377a17a33471</doaj_id><sourcerecordid>1910337001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823</originalsourceid><addsrcrecordid>eNp9kVFv2yAUha1p01p1_QfT5Me9JOFiA_bLpCpKu0hZO6XdM7rGl8SRbTJwGuXflyxd176MF7jA_Q6ckySfgY2BgZxsxoZaT9sxZ6DGTIyZhHfJOecAI-C5ev9qfZZchrBhcUgGUOYfkzNeSMgVyPNEP6wpvb17mH6Hyf3t1XwBkx-zaz5Nf-Kw3uMhXdJq1-JAIb3xbj-sU-zr9J5aO1pST3ts06ZPZ13lD66PxXKNVe26gwvojevwU_LBYhvo8nm-SH5dz6LaaHF3M59eLUZG8HIYlXkOOSgFjNmqkCVjZLnEvKwzIeqaW8aRLAGXlovCFkbxDITkrDBSFQXPLpL5iVs73Oitbzr0B-2w0X82nF9p9ENjWtIWqaKKW1NLkducYwUqUwpBYZZFVyLr24m13VUd1Yb6wWP7Bvr2pG_WeuUetRAyY0pEwNdngHe_dxQG3TUhBtZiT24XNJTAskwxdtTKT1eNdyF4si8ywPQxar3Rp6j1MWrNhI5Rx7Yvr5_40vQ32H9_oGj6Y0NeB9NQb6huPJkhutL8X-EJnXq52w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910337001</pqid></control><display><type>article</type><title>The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ignatius, Myron S. ; Hayes, Madeline N. ; Lobbardi, Riadh ; Chen, Eleanor Y. ; McCarthy, Karin M. ; Sreenivas, Prethish ; Motala, Zainab ; Durbin, Adam D. ; Molodtsov, Aleksey ; Reeder, Sophia ; Jin, Alexander ; Sindiri, Sivasish ; Beleyea, Brian C. ; Bhere, Deepak ; Alexander, Matthew S. ; Shah, Khalid ; Keller, Charles ; Linardic, Corinne M. ; Nielsen, Petur G. ; Malkin, David ; Khan, Javed ; Langenau, David M.</creator><creatorcontrib>Ignatius, Myron S. ; Hayes, Madeline N. ; Lobbardi, Riadh ; Chen, Eleanor Y. ; McCarthy, Karin M. ; Sreenivas, Prethish ; Motala, Zainab ; Durbin, Adam D. ; Molodtsov, Aleksey ; Reeder, Sophia ; Jin, Alexander ; Sindiri, Sivasish ; Beleyea, Brian C. ; Bhere, Deepak ; Alexander, Matthew S. ; Shah, Khalid ; Keller, Charles ; Linardic, Corinne M. ; Nielsen, Petur G. ; Malkin, David ; Khan, Javed ; Langenau, David M.</creatorcontrib><description>Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. [Display omitted] •NOTCH1 expands the number of tumor-propagating cells (TPCs) in zebrafish and human ERMS•Notch1 drives the de-differentiation of zebrafish ERMS cells into self-renewing TPCs•A NOTCH1/SNAI1 pathway drives self-renewal and blocks MEF2C regulated differentiation•Self-renewal and differentiation pathways are linked and viable therapeutic targets Tumor-propagating cells (TPCs) drive cancer growth, yet mechanisms regulating TPC self-renewal and maintenance are largely unknown. Ignatius et al. show that the NOTCH1/SNAIL1 pathway synergizes with RAS to expand TPCs in embryonal rhabdomyosarcoma. This pathway blocks MEF2C-induced differentiation and enables the de-differentiation of ERMS cells into self-renewing TPCs.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2017.05.061</identifier><identifier>PMID: 28614716</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Differentiation - physiology ; de-differentiation ; Humans ; MEF2 Transcription Factors - metabolism ; MEF2C ; muscle ; NOTCH1 ; Receptor, Notch1 - metabolism ; rhabdomyosarcoma ; Rhabdomyosarcoma, Embryonal - metabolism ; Rhabdomyosarcoma, Embryonal - pathology ; self-renewal ; Signal Transduction ; SNAI1 ; Snail Family Transcription Factors - metabolism ; Transcription Factors - metabolism ; tumor propagating cells ; Xenopus Proteins - metabolism ; Zebrafish</subject><ispartof>Cell reports (Cambridge), 2017-06, Vol.19 (11), p.2304-2318</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823</citedby><cites>FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28614716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ignatius, Myron S.</creatorcontrib><creatorcontrib>Hayes, Madeline N.</creatorcontrib><creatorcontrib>Lobbardi, Riadh</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>McCarthy, Karin M.</creatorcontrib><creatorcontrib>Sreenivas, Prethish</creatorcontrib><creatorcontrib>Motala, Zainab</creatorcontrib><creatorcontrib>Durbin, Adam D.</creatorcontrib><creatorcontrib>Molodtsov, Aleksey</creatorcontrib><creatorcontrib>Reeder, Sophia</creatorcontrib><creatorcontrib>Jin, Alexander</creatorcontrib><creatorcontrib>Sindiri, Sivasish</creatorcontrib><creatorcontrib>Beleyea, Brian C.</creatorcontrib><creatorcontrib>Bhere, Deepak</creatorcontrib><creatorcontrib>Alexander, Matthew S.</creatorcontrib><creatorcontrib>Shah, Khalid</creatorcontrib><creatorcontrib>Keller, Charles</creatorcontrib><creatorcontrib>Linardic, Corinne M.</creatorcontrib><creatorcontrib>Nielsen, Petur G.</creatorcontrib><creatorcontrib>Malkin, David</creatorcontrib><creatorcontrib>Khan, Javed</creatorcontrib><creatorcontrib>Langenau, David M.</creatorcontrib><title>The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. [Display omitted] •NOTCH1 expands the number of tumor-propagating cells (TPCs) in zebrafish and human ERMS•Notch1 drives the de-differentiation of zebrafish ERMS cells into self-renewing TPCs•A NOTCH1/SNAI1 pathway drives self-renewal and blocks MEF2C regulated differentiation•Self-renewal and differentiation pathways are linked and viable therapeutic targets Tumor-propagating cells (TPCs) drive cancer growth, yet mechanisms regulating TPC self-renewal and maintenance are largely unknown. Ignatius et al. show that the NOTCH1/SNAIL1 pathway synergizes with RAS to expand TPCs in embryonal rhabdomyosarcoma. This pathway blocks MEF2C-induced differentiation and enables the de-differentiation of ERMS cells into self-renewing TPCs.</description><subject>Animals</subject><subject>Cell Differentiation - physiology</subject><subject>de-differentiation</subject><subject>Humans</subject><subject>MEF2 Transcription Factors - metabolism</subject><subject>MEF2C</subject><subject>muscle</subject><subject>NOTCH1</subject><subject>Receptor, Notch1 - metabolism</subject><subject>rhabdomyosarcoma</subject><subject>Rhabdomyosarcoma, Embryonal - metabolism</subject><subject>Rhabdomyosarcoma, Embryonal - pathology</subject><subject>self-renewal</subject><subject>Signal Transduction</subject><subject>SNAI1</subject><subject>Snail Family Transcription Factors - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>tumor propagating cells</subject><subject>Xenopus Proteins - metabolism</subject><subject>Zebrafish</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kVFv2yAUha1p01p1_QfT5Me9JOFiA_bLpCpKu0hZO6XdM7rGl8SRbTJwGuXflyxd176MF7jA_Q6ckySfgY2BgZxsxoZaT9sxZ6DGTIyZhHfJOecAI-C5ev9qfZZchrBhcUgGUOYfkzNeSMgVyPNEP6wpvb17mH6Hyf3t1XwBkx-zaz5Nf-Kw3uMhXdJq1-JAIb3xbj-sU-zr9J5aO1pST3ts06ZPZ13lD66PxXKNVe26gwvojevwU_LBYhvo8nm-SH5dz6LaaHF3M59eLUZG8HIYlXkOOSgFjNmqkCVjZLnEvKwzIeqaW8aRLAGXlovCFkbxDITkrDBSFQXPLpL5iVs73Oitbzr0B-2w0X82nF9p9ENjWtIWqaKKW1NLkducYwUqUwpBYZZFVyLr24m13VUd1Yb6wWP7Bvr2pG_WeuUetRAyY0pEwNdngHe_dxQG3TUhBtZiT24XNJTAskwxdtTKT1eNdyF4si8ywPQxar3Rp6j1MWrNhI5Rx7Yvr5_40vQ32H9_oGj6Y0NeB9NQb6huPJkhutL8X-EJnXq52w</recordid><startdate>20170613</startdate><enddate>20170613</enddate><creator>Ignatius, Myron S.</creator><creator>Hayes, Madeline N.</creator><creator>Lobbardi, Riadh</creator><creator>Chen, Eleanor Y.</creator><creator>McCarthy, Karin M.</creator><creator>Sreenivas, Prethish</creator><creator>Motala, Zainab</creator><creator>Durbin, Adam D.</creator><creator>Molodtsov, Aleksey</creator><creator>Reeder, Sophia</creator><creator>Jin, Alexander</creator><creator>Sindiri, Sivasish</creator><creator>Beleyea, Brian C.</creator><creator>Bhere, Deepak</creator><creator>Alexander, Matthew S.</creator><creator>Shah, Khalid</creator><creator>Keller, Charles</creator><creator>Linardic, Corinne M.</creator><creator>Nielsen, Petur G.</creator><creator>Malkin, David</creator><creator>Khan, Javed</creator><creator>Langenau, David M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170613</creationdate><title>The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma</title><author>Ignatius, Myron S. ; Hayes, Madeline N. ; Lobbardi, Riadh ; Chen, Eleanor Y. ; McCarthy, Karin M. ; Sreenivas, Prethish ; Motala, Zainab ; Durbin, Adam D. ; Molodtsov, Aleksey ; Reeder, Sophia ; Jin, Alexander ; Sindiri, Sivasish ; Beleyea, Brian C. ; Bhere, Deepak ; Alexander, Matthew S. ; Shah, Khalid ; Keller, Charles ; Linardic, Corinne M. ; Nielsen, Petur G. ; Malkin, David ; Khan, Javed ; Langenau, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cell Differentiation - physiology</topic><topic>de-differentiation</topic><topic>Humans</topic><topic>MEF2 Transcription Factors - metabolism</topic><topic>MEF2C</topic><topic>muscle</topic><topic>NOTCH1</topic><topic>Receptor, Notch1 - metabolism</topic><topic>rhabdomyosarcoma</topic><topic>Rhabdomyosarcoma, Embryonal - metabolism</topic><topic>Rhabdomyosarcoma, Embryonal - pathology</topic><topic>self-renewal</topic><topic>Signal Transduction</topic><topic>SNAI1</topic><topic>Snail Family Transcription Factors - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>tumor propagating cells</topic><topic>Xenopus Proteins - metabolism</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignatius, Myron S.</creatorcontrib><creatorcontrib>Hayes, Madeline N.</creatorcontrib><creatorcontrib>Lobbardi, Riadh</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>McCarthy, Karin M.</creatorcontrib><creatorcontrib>Sreenivas, Prethish</creatorcontrib><creatorcontrib>Motala, Zainab</creatorcontrib><creatorcontrib>Durbin, Adam D.</creatorcontrib><creatorcontrib>Molodtsov, Aleksey</creatorcontrib><creatorcontrib>Reeder, Sophia</creatorcontrib><creatorcontrib>Jin, Alexander</creatorcontrib><creatorcontrib>Sindiri, Sivasish</creatorcontrib><creatorcontrib>Beleyea, Brian C.</creatorcontrib><creatorcontrib>Bhere, Deepak</creatorcontrib><creatorcontrib>Alexander, Matthew S.</creatorcontrib><creatorcontrib>Shah, Khalid</creatorcontrib><creatorcontrib>Keller, Charles</creatorcontrib><creatorcontrib>Linardic, Corinne M.</creatorcontrib><creatorcontrib>Nielsen, Petur G.</creatorcontrib><creatorcontrib>Malkin, David</creatorcontrib><creatorcontrib>Khan, Javed</creatorcontrib><creatorcontrib>Langenau, David M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignatius, Myron S.</au><au>Hayes, Madeline N.</au><au>Lobbardi, Riadh</au><au>Chen, Eleanor Y.</au><au>McCarthy, Karin M.</au><au>Sreenivas, Prethish</au><au>Motala, Zainab</au><au>Durbin, Adam D.</au><au>Molodtsov, Aleksey</au><au>Reeder, Sophia</au><au>Jin, Alexander</au><au>Sindiri, Sivasish</au><au>Beleyea, Brian C.</au><au>Bhere, Deepak</au><au>Alexander, Matthew S.</au><au>Shah, Khalid</au><au>Keller, Charles</au><au>Linardic, Corinne M.</au><au>Nielsen, Petur G.</au><au>Malkin, David</au><au>Khan, Javed</au><au>Langenau, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-06-13</date><risdate>2017</risdate><volume>19</volume><issue>11</issue><spage>2304</spage><epage>2318</epage><pages>2304-2318</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 upregulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future. [Display omitted] •NOTCH1 expands the number of tumor-propagating cells (TPCs) in zebrafish and human ERMS•Notch1 drives the de-differentiation of zebrafish ERMS cells into self-renewing TPCs•A NOTCH1/SNAI1 pathway drives self-renewal and blocks MEF2C regulated differentiation•Self-renewal and differentiation pathways are linked and viable therapeutic targets Tumor-propagating cells (TPCs) drive cancer growth, yet mechanisms regulating TPC self-renewal and maintenance are largely unknown. Ignatius et al. show that the NOTCH1/SNAIL1 pathway synergizes with RAS to expand TPCs in embryonal rhabdomyosarcoma. This pathway blocks MEF2C-induced differentiation and enables the de-differentiation of ERMS cells into self-renewing TPCs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28614716</pmid><doi>10.1016/j.celrep.2017.05.061</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2017-06, Vol.19 (11), p.2304-2318
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_faebeb2fcd654f42ab17377a17a33471
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Cell Differentiation - physiology
de-differentiation
Humans
MEF2 Transcription Factors - metabolism
MEF2C
muscle
NOTCH1
Receptor, Notch1 - metabolism
rhabdomyosarcoma
Rhabdomyosarcoma, Embryonal - metabolism
Rhabdomyosarcoma, Embryonal - pathology
self-renewal
Signal Transduction
SNAI1
Snail Family Transcription Factors - metabolism
Transcription Factors - metabolism
tumor propagating cells
Xenopus Proteins - metabolism
Zebrafish
title The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NOTCH1/SNAIL1/MEF2C%20Pathway%20Regulates%20Growth%20and%20Self-Renewal%20in%20Embryonal%20Rhabdomyosarcoma&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Ignatius,%20Myron%20S.&rft.date=2017-06-13&rft.volume=19&rft.issue=11&rft.spage=2304&rft.epage=2318&rft.pages=2304-2318&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2017.05.061&rft_dat=%3Cproquest_doaj_%3E1910337001%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-94414177100fb86900ef26a49d355dd2f02aefe126f258f8c723156208c678823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910337001&rft_id=info:pmid/28614716&rfr_iscdi=true