Loading…

Lag Effect of Temperature and Humidity on COVID-19 Cases in 11 Chinese Cities

The global transmission of COVID-19 has caused considerable health burdens, and epidemiological studies have proven that temperature and humidity play an important role in the transmission of infectious respiratory diseases. This effect may not be immediate and can be delayed by days to weeks. In th...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2022-09, Vol.13 (9), p.1486
Main Authors: Feng, Fengliu, Ma, Yuxia, Cheng, Bowen, Zhang, Yifan, Li, Heping, Qin, Pengpeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The global transmission of COVID-19 has caused considerable health burdens, and epidemiological studies have proven that temperature and humidity play an important role in the transmission of infectious respiratory diseases. This effect may not be immediate and can be delayed by days to weeks. In this study, the comprehensive effect of temperature and humidity on COVID-19 was evaluated using the discomfort index (DI). We analyzed the lag effect of the DI on COVID-19 from 21 January to 29 February 2020 in 11 Chinese cities by designing a generalized additive model (GAM). We classified the 11 Chinese cities into southern cities and northern cities to compare the potential effects in these two types of cities. The results reveal that the DI had the same negative correlation and different lag effects on daily COVID-19 cases. There was a significant negative correlation between the DI and daily COVID-19 cases (p < 0.05), except in Wuhan. The lag effect was stronger in the cities located further north. In northern cities, each unit decrease in the DI increased the COVID-19 risk from 7 to 13 lag days. In southern China, each unit decrease in the DI increased the COVID-19 risk from 0 to 7 lag days, especially in Shanghai, Guangzhou, and Shenzhen.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13091486