Loading…
A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network
This paper builds an evolution model of investors behavior based on the reinforcement learning in multiplex networks. Due to the heterogeneity of learning characteristics of bounded rational investors in investment decisions, we consider, respectively, the evolution mechanism of individual investors...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163 |
container_end_page | 13 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2020 |
creator | Liu, Xiaqun Li, Jinsheng Zhuang, Yaming |
description | This paper builds an evolution model of investors behavior based on the reinforcement learning in multiplex networks. Due to the heterogeneity of learning characteristics of bounded rational investors in investment decisions, we consider, respectively, the evolution mechanism of individual investors and institutional investors on the complex network theory and reinforcement learning theory. We perform mathematical analysis and simulation to further explain the evolution characteristics of investors behavior. The conclusions are drawn as follows: First, the intensity of returns competition among institutional investors and the forgetting effect both have an impact on the equilibrium of their evolution as to all institutional investors and individual investors. Second, the network topology significantly affects the behavioral evolution of individual investors compared with institutional investors. |
doi_str_mv | 10.1155/2020/3561538 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb1ebd0a83d14429a1299c1ae3f66d8c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697096600</galeid><doaj_id>oai_doaj_org_article_fb1ebd0a83d14429a1299c1ae3f66d8c</doaj_id><sourcerecordid>A697096600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEEmVgxxpZYglp7fiReDmtSjvSFCQea-vGvp56HnZxMlPx73FIBUvkha3r7x4dnVNVbxk9Z0zKi4Y29IJLxSTvnlVnjGpdU9mo59O7VXXTdu3L6tUwbCmlWvH2rPJLcpcc7olPmVyf0v44hhRJ8mQVTziMKQ_kEu_hFMp_iOTbmOyO3EHe4UguYUBHCv4VQywCFg8YR7JGyDHEzcR_xvEx5d3r6oWH_YBvnu5F9ePT9fer23r95WZ1tVzXVig51k0vgXLpUDfWQ2-17bVUPbVUadXrTjnai8Y6KqUTsi2odWA57VgHwjPFF9Vq1nUJtuYhhwPkXyZBMH8GKW8M5DHYPRrfM-wdhY47JkSjgTVaWwbIvVKus0Xr_az1kNPPY8nCbNMxx2LfNEJozZksQS-q85naQBGdYhgz2HIcHoJNEX0o86XSbUlcUVoWPs4LNqdhyOj_2mTUTDWaqUbzVGPBP8z4fYgOHsP_6HczjYVBD_9oJopdwX8DMQylQw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449931515</pqid></control><display><type>article</type><title>A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network</title><source>Wiley Online Library Open Access</source><creator>Liu, Xiaqun ; Li, Jinsheng ; Zhuang, Yaming</creator><contributor>Zhou, Wei ; Wei Zhou</contributor><creatorcontrib>Liu, Xiaqun ; Li, Jinsheng ; Zhuang, Yaming ; Zhou, Wei ; Wei Zhou</creatorcontrib><description>This paper builds an evolution model of investors behavior based on the reinforcement learning in multiplex networks. Due to the heterogeneity of learning characteristics of bounded rational investors in investment decisions, we consider, respectively, the evolution mechanism of individual investors and institutional investors on the complex network theory and reinforcement learning theory. We perform mathematical analysis and simulation to further explain the evolution characteristics of investors behavior. The conclusions are drawn as follows: First, the intensity of returns competition among institutional investors and the forgetting effect both have an impact on the equilibrium of their evolution as to all institutional investors and individual investors. Second, the network topology significantly affects the behavioral evolution of individual investors compared with institutional investors.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2020/3561538</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Behavior ; Behavior evolution ; Decision making ; Evolution ; Financial institutions ; Financial markets ; Heterogeneity ; Information dissemination ; Institutional investments ; Investment ; Investment policy ; Investments ; Investor behavior ; Learning ; Learning strategies ; Learning theory ; Mathematical analysis ; Network topologies ; Numerical analysis ; Securities markets ; Social networks ; Stock exchanges ; Stocks ; Volatility</subject><ispartof>Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Xiaqun Liu et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Xiaqun Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163</citedby><cites>FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163</cites><orcidid>0000-0002-5883-0520 ; 0000-0003-4461-471X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><contributor>Zhou, Wei</contributor><contributor>Wei Zhou</contributor><creatorcontrib>Liu, Xiaqun</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Zhuang, Yaming</creatorcontrib><title>A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network</title><title>Complexity (New York, N.Y.)</title><description>This paper builds an evolution model of investors behavior based on the reinforcement learning in multiplex networks. Due to the heterogeneity of learning characteristics of bounded rational investors in investment decisions, we consider, respectively, the evolution mechanism of individual investors and institutional investors on the complex network theory and reinforcement learning theory. We perform mathematical analysis and simulation to further explain the evolution characteristics of investors behavior. The conclusions are drawn as follows: First, the intensity of returns competition among institutional investors and the forgetting effect both have an impact on the equilibrium of their evolution as to all institutional investors and individual investors. Second, the network topology significantly affects the behavioral evolution of individual investors compared with institutional investors.</description><subject>Behavior</subject><subject>Behavior evolution</subject><subject>Decision making</subject><subject>Evolution</subject><subject>Financial institutions</subject><subject>Financial markets</subject><subject>Heterogeneity</subject><subject>Information dissemination</subject><subject>Institutional investments</subject><subject>Investment</subject><subject>Investment policy</subject><subject>Investments</subject><subject>Investor behavior</subject><subject>Learning</subject><subject>Learning strategies</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Network topologies</subject><subject>Numerical analysis</subject><subject>Securities markets</subject><subject>Social networks</subject><subject>Stock exchanges</subject><subject>Stocks</subject><subject>Volatility</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUtv1DAUhSMEEmVgxxpZYglp7fiReDmtSjvSFCQea-vGvp56HnZxMlPx73FIBUvkha3r7x4dnVNVbxk9Z0zKi4Y29IJLxSTvnlVnjGpdU9mo59O7VXXTdu3L6tUwbCmlWvH2rPJLcpcc7olPmVyf0v44hhRJ8mQVTziMKQ_kEu_hFMp_iOTbmOyO3EHe4UguYUBHCv4VQywCFg8YR7JGyDHEzcR_xvEx5d3r6oWH_YBvnu5F9ePT9fer23r95WZ1tVzXVig51k0vgXLpUDfWQ2-17bVUPbVUadXrTjnai8Y6KqUTsi2odWA57VgHwjPFF9Vq1nUJtuYhhwPkXyZBMH8GKW8M5DHYPRrfM-wdhY47JkSjgTVaWwbIvVKus0Xr_az1kNPPY8nCbNMxx2LfNEJozZksQS-q85naQBGdYhgz2HIcHoJNEX0o86XSbUlcUVoWPs4LNqdhyOj_2mTUTDWaqUbzVGPBP8z4fYgOHsP_6HczjYVBD_9oJopdwX8DMQylQw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Xiaqun</creator><creator>Li, Jinsheng</creator><creator>Zhuang, Yaming</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5883-0520</orcidid><orcidid>https://orcid.org/0000-0003-4461-471X</orcidid></search><sort><creationdate>2020</creationdate><title>A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network</title><author>Liu, Xiaqun ; Li, Jinsheng ; Zhuang, Yaming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Behavior</topic><topic>Behavior evolution</topic><topic>Decision making</topic><topic>Evolution</topic><topic>Financial institutions</topic><topic>Financial markets</topic><topic>Heterogeneity</topic><topic>Information dissemination</topic><topic>Institutional investments</topic><topic>Investment</topic><topic>Investment policy</topic><topic>Investments</topic><topic>Investor behavior</topic><topic>Learning</topic><topic>Learning strategies</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Network topologies</topic><topic>Numerical analysis</topic><topic>Securities markets</topic><topic>Social networks</topic><topic>Stock exchanges</topic><topic>Stocks</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaqun</creatorcontrib><creatorcontrib>Li, Jinsheng</creatorcontrib><creatorcontrib>Zhuang, Yaming</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaqun</au><au>Li, Jinsheng</au><au>Zhuang, Yaming</au><au>Zhou, Wei</au><au>Wei Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This paper builds an evolution model of investors behavior based on the reinforcement learning in multiplex networks. Due to the heterogeneity of learning characteristics of bounded rational investors in investment decisions, we consider, respectively, the evolution mechanism of individual investors and institutional investors on the complex network theory and reinforcement learning theory. We perform mathematical analysis and simulation to further explain the evolution characteristics of investors behavior. The conclusions are drawn as follows: First, the intensity of returns competition among institutional investors and the forgetting effect both have an impact on the equilibrium of their evolution as to all institutional investors and individual investors. Second, the network topology significantly affects the behavioral evolution of individual investors compared with institutional investors.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3561538</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5883-0520</orcidid><orcidid>https://orcid.org/0000-0003-4461-471X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2020, Vol.2020 (2020), p.1-13 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fb1ebd0a83d14429a1299c1ae3f66d8c |
source | Wiley Online Library Open Access |
subjects | Behavior Behavior evolution Decision making Evolution Financial institutions Financial markets Heterogeneity Information dissemination Institutional investments Investment Investment policy Investments Investor behavior Learning Learning strategies Learning theory Mathematical analysis Network topologies Numerical analysis Securities markets Social networks Stock exchanges Stocks Volatility |
title | A Model for Evolution of Investors Behavior in Stock Market Based on Reinforcement Learning in Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Evolution%20of%20Investors%20Behavior%20in%20Stock%20Market%20Based%20on%20Reinforcement%20Learning%20in%20Network&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Liu,%20Xiaqun&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2020/3561538&rft_dat=%3Cgale_doaj_%3EA697096600%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2b5a035de92cfabc9cb956b0c0696b986d0b42cd055d457035cdac30818a4f163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449931515&rft_id=info:pmid/&rft_galeid=A697096600&rfr_iscdi=true |