Loading…
Optically-excited simultaneous photoacoustic and ultrasound imaging based on a flexible gold-PDMS film
We constructed a flexible gold-polydimethylsiloxane (gold-PDMS) nanocomposites film with controllable thickness and light transmittance, to realize optically-excited simultaneous photoacoustic (PA) and ultrasound (US) imaging under a single laser pulse irradiation. Benefiting from the excellent ther...
Saved in:
Published in: | Journal of innovative optical health science 2020-07, Vol.13 (4), p.2050012-1-2050012-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We constructed a flexible gold-polydimethylsiloxane (gold-PDMS) nanocomposites film with controllable thickness and light transmittance, to realize optically-excited simultaneous photoacoustic (PA) and ultrasound (US) imaging under a single laser pulse irradiation. Benefiting from the excellent thermoelastic properties, the gold-PDMS film absorbs part of the incident laser energy and produces a high-intensity US, which is used to realize US imaging. Meanwhile, the partly transmitted light is used to excite samples for PA imaging. By controlling the thickness of the gold-PDMS, we can control the center frequency in the US imaging. We experimentally analyzed the frequency of the produced US signal by the gold-PDMS film and compared it with the finite element analysis (FEA) method, where the experiments agree with the FEA results. This method is demonstrated by the experiments on phantoms and a mouse model. Our work provides a cost-effective methodology for simultaneous PA and US imaging. |
---|---|
ISSN: | 1793-5458 1793-7205 |
DOI: | 10.1142/S1793545820500121 |