Loading…

Accessing Active Inference Theory through Its Implicit and Deliberative Practice in Human Organizations

Active inference theory (AIT) is a corollary of the free-energy principle, which formalizes cognition of living system’s autopoietic organization. AIT comprises specialist terminology and mathematics used in theoretical neurobiology. Yet, active inference is common practice in human organizations, s...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2021-11, Vol.23 (11), p.1521
Main Author: Fox, Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active inference theory (AIT) is a corollary of the free-energy principle, which formalizes cognition of living system’s autopoietic organization. AIT comprises specialist terminology and mathematics used in theoretical neurobiology. Yet, active inference is common practice in human organizations, such as private companies, public institutions, and not-for-profits. Active inference encompasses three interrelated types of actions, which are carried out to minimize uncertainty about how organizations will survive. The three types of action are updating work beliefs, shifting work attention, and/or changing how work is performed. Accordingly, an alternative starting point for grasping active inference, rather than trying to understand AIT specialist terminology and mathematics, is to reflect upon lived experience. In other words, grasping active inference through autoethnographic research. In this short communication paper, accessing AIT through autoethnography is explained in terms of active inference in existing organizational practice (implicit active inference), new organizational methodologies that are informed by AIT (deliberative active inference), and combining implicit and deliberative active inference. In addition, these autoethnographic options for grasping AIT are related to generative learning.
ISSN:1099-4300
1099-4300
DOI:10.3390/e23111521