Loading…

Nodal solutions for nonlinear Schrodinger systems

In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a b...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations 2024-04, Vol.2024 (1-??), p.31-13
Main Authors: Zhou, Xue, Liu, Xiangqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c298t-e309106e4370b70eedadfa7c0a6caab1ff268806fbfa98eed60dc77cdd868ca83
container_end_page 13
container_issue 1-??
container_start_page 31
container_title Electronic journal of differential equations
container_volume 2024
creator Zhou, Xue
Liu, Xiangqing
description In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j> 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}>0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i< j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. For more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html  
doi_str_mv 10.58997/ejde.2024.31
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb724dffc37f414da3027931b7565700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb724dffc37f414da3027931b7565700</doaj_id><sourcerecordid>oai_doaj_org_article_fb724dffc37f414da3027931b7565700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e309106e4370b70eedadfa7c0a6caab1ff268806fbfa98eed60dc77cdd868ca83</originalsourceid><addsrcrecordid>eNpNkMlOwzAURS0EEqWwZJ8fSHge4mGJKoZKFSyAtfXioaRKY2SHRf-eDgixulf3SmdxCLml0LTaGHUXNj40DJhoOD0jMwqK1VIaev6vX5KrUjYA1AgmZoS-JI9DVdLwPfVpLFVMuRrTOPRjwFy9uc-cfD-uQ67KrkxhW67JRcShhJvfnJOPx4f3xXO9en1aLu5XtWNGT3XgYCjIILiCTkEIHn1E5QClQ-xojExqDTJ2EY3e3xK8U8p5r6V2qPmcLE9cn3Bjv3K_xbyzCXt7HFJeW8xT74ZgY6eY8DE6rqKgwiMHpgynnWplqwD2rPrEcjmVkkP841GwR3f24M4e3FlO-Q_YxGNO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nodal solutions for nonlinear Schrodinger systems</title><source>DOAJ Directory of Open Access Journals</source><creator>Zhou, Xue ; Liu, Xiangqing</creator><creatorcontrib>Zhou, Xue ; Liu, Xiangqing</creatorcontrib><description>In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j&gt; 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}&gt;0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i&lt; j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. For more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html  </description><identifier>ISSN: 1072-6691</identifier><identifier>EISSN: 1072-6691</identifier><identifier>DOI: 10.58997/ejde.2024.31</identifier><language>eng</language><publisher>Texas State University</publisher><subject>method of invariant sets of descending flow ; schrodinger system ; sign-changing solutions ; truncation method</subject><ispartof>Electronic journal of differential equations, 2024-04, Vol.2024 (1-??), p.31-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-e309106e4370b70eedadfa7c0a6caab1ff268806fbfa98eed60dc77cdd868ca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Xue</creatorcontrib><creatorcontrib>Liu, Xiangqing</creatorcontrib><title>Nodal solutions for nonlinear Schrodinger systems</title><title>Electronic journal of differential equations</title><description>In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j&gt; 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}&gt;0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i&lt; j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. For more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html  </description><subject>method of invariant sets of descending flow</subject><subject>schrodinger system</subject><subject>sign-changing solutions</subject><subject>truncation method</subject><issn>1072-6691</issn><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMlOwzAURS0EEqWwZJ8fSHge4mGJKoZKFSyAtfXioaRKY2SHRf-eDgixulf3SmdxCLml0LTaGHUXNj40DJhoOD0jMwqK1VIaev6vX5KrUjYA1AgmZoS-JI9DVdLwPfVpLFVMuRrTOPRjwFy9uc-cfD-uQ67KrkxhW67JRcShhJvfnJOPx4f3xXO9en1aLu5XtWNGT3XgYCjIILiCTkEIHn1E5QClQ-xojExqDTJ2EY3e3xK8U8p5r6V2qPmcLE9cn3Bjv3K_xbyzCXt7HFJeW8xT74ZgY6eY8DE6rqKgwiMHpgynnWplqwD2rPrEcjmVkkP841GwR3f24M4e3FlO-Q_YxGNO</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Zhou, Xue</creator><creator>Liu, Xiangqing</creator><general>Texas State University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240424</creationdate><title>Nodal solutions for nonlinear Schrodinger systems</title><author>Zhou, Xue ; Liu, Xiangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e309106e4370b70eedadfa7c0a6caab1ff268806fbfa98eed60dc77cdd868ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>method of invariant sets of descending flow</topic><topic>schrodinger system</topic><topic>sign-changing solutions</topic><topic>truncation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xue</creatorcontrib><creatorcontrib>Liu, Xiangqing</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xue</au><au>Liu, Xiangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nodal solutions for nonlinear Schrodinger systems</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2024-04-24</date><risdate>2024</risdate><volume>2024</volume><issue>1-??</issue><spage>31</spage><epage>13</epage><pages>31-13</pages><issn>1072-6691</issn><eissn>1072-6691</eissn><abstract>In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j&gt; 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}&gt;0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i&lt; j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. For more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html  </abstract><pub>Texas State University</pub><doi>10.58997/ejde.2024.31</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-6691
ispartof Electronic journal of differential equations, 2024-04, Vol.2024 (1-??), p.31-13
issn 1072-6691
1072-6691
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fb724dffc37f414da3027931b7565700
source DOAJ Directory of Open Access Journals
subjects method of invariant sets of descending flow
schrodinger system
sign-changing solutions
truncation method
title Nodal solutions for nonlinear Schrodinger systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nodal%20solutions%20for%20nonlinear%20Schrodinger%20systems&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Zhou,%20Xue&rft.date=2024-04-24&rft.volume=2024&rft.issue=1-??&rft.spage=31&rft.epage=13&rft.pages=31-13&rft.issn=1072-6691&rft.eissn=1072-6691&rft_id=info:doi/10.58997/ejde.2024.31&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fb724dffc37f414da3027931b7565700%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-e309106e4370b70eedadfa7c0a6caab1ff268806fbfa98eed60dc77cdd868ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true