Loading…

A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks

Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs ben...

Full description

Saved in:
Bibliographic Details
Published in:APL photonics 2023-12, Vol.8 (12), p.121301-121301-7
Main Authors: Ashtiani, F., Idjadi, M. H., Hu, T. C., Grillanda, S., Neilson, D., Earnshaw, M., Cappuzzo, M., Kopf, R., Tate, A., Blanco-Redondo, A.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-19d24b34d40afc988f7b0c12751b3e46692b09528dabfae806b3aa3c116f99cc3
container_end_page 121301-7
container_issue 12
container_start_page 121301
container_title APL photonics
container_volume 8
creator Ashtiani, F.
Idjadi, M. H.
Hu, T. C.
Grillanda, S.
Neilson, D.
Earnshaw, M.
Cappuzzo, M.
Kopf, R.
Tate, A.
Blanco-Redondo, A.
description Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel surface-normal photodetector (SNPD) with an optical-in–electrical-out (O–E) nonlinear response to replace the camera sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than 10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the SNPD a promising O–E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed neural nonlinearity, successful classification simulations of the MNIST and Fashion MNIST datasets using the measured response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.
doi_str_mv 10.1063/5.0168959
format article
fullrecord <record><control><sourceid>scitation_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb73ed458d5d4815bd3cd83fad52473a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb73ed458d5d4815bd3cd83fad52473a</doaj_id><sourcerecordid>app</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-19d24b34d40afc988f7b0c12751b3e46692b09528dabfae806b3aa3c116f99cc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGoX_oPZKkxNJslMsizFR6HgRtfh5qWp7aQkqeK_d5yKuHJ1zr338HE5CF0SPCe4pTd8jkkrJJcnaNLQTtRYtt3pH3-OZjlvMB5iHZGMT5BfVPmQPBhX9zHtYFvtX2OJ1hVnSkwV5KqP_Tb0DobBlPAOJcS-8ofejCb0lQ3ep_HmqrgvwQyU3h3SKOUjprd8gc48bLOb_egUPd_dPi0f6vXj_Wq5WNeGNrzURNqGacosw-CNFMJ3GhvSdJxo6ljbykZjyRthQXtwAreaAlBDSOulNIZO0erItRE2ap_CDtKnihDUuIjpRUEaPtw65XVHnWVcWG6ZIFxbaqygHixvWEdhYF0dWSbFnJPzvzyC1Xffiqufvofs9TGbTShjQ_-EvwBL7oHo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks</title><source>AIP Open Access Journals</source><creator>Ashtiani, F. ; Idjadi, M. H. ; Hu, T. C. ; Grillanda, S. ; Neilson, D. ; Earnshaw, M. ; Cappuzzo, M. ; Kopf, R. ; Tate, A. ; Blanco-Redondo, A.</creator><creatorcontrib>Ashtiani, F. ; Idjadi, M. H. ; Hu, T. C. ; Grillanda, S. ; Neilson, D. ; Earnshaw, M. ; Cappuzzo, M. ; Kopf, R. ; Tate, A. ; Blanco-Redondo, A.</creatorcontrib><description>Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel surface-normal photodetector (SNPD) with an optical-in–electrical-out (O–E) nonlinear response to replace the camera sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than 10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the SNPD a promising O–E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed neural nonlinearity, successful classification simulations of the MNIST and Fashion MNIST datasets using the measured response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.</description><identifier>ISSN: 2378-0967</identifier><identifier>EISSN: 2378-0967</identifier><identifier>DOI: 10.1063/5.0168959</identifier><identifier>CODEN: APPHD2</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL photonics, 2023-12, Vol.8 (12), p.121301-121301-7</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-19d24b34d40afc988f7b0c12751b3e46692b09528dabfae806b3aa3c116f99cc3</cites><orcidid>0000-0002-2242-6112 ; 0000-0002-3024-5856 ; 0000-0001-7149-1722 ; 0009-0003-3821-9948 ; 0000-0002-8418-9626 ; 0000-0002-0237-3156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/app/article-lookup/doi/10.1063/5.0168959$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27890,27924,27925,76408</link.rule.ids></links><search><creatorcontrib>Ashtiani, F.</creatorcontrib><creatorcontrib>Idjadi, M. H.</creatorcontrib><creatorcontrib>Hu, T. C.</creatorcontrib><creatorcontrib>Grillanda, S.</creatorcontrib><creatorcontrib>Neilson, D.</creatorcontrib><creatorcontrib>Earnshaw, M.</creatorcontrib><creatorcontrib>Cappuzzo, M.</creatorcontrib><creatorcontrib>Kopf, R.</creatorcontrib><creatorcontrib>Tate, A.</creatorcontrib><creatorcontrib>Blanco-Redondo, A.</creatorcontrib><title>A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks</title><title>APL photonics</title><description>Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel surface-normal photodetector (SNPD) with an optical-in–electrical-out (O–E) nonlinear response to replace the camera sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than 10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the SNPD a promising O–E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed neural nonlinearity, successful classification simulations of the MNIST and Fashion MNIST datasets using the measured response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.</description><issn>2378-0967</issn><issn>2378-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLAzEUhYMoWGoX_oPZKkxNJslMsizFR6HgRtfh5qWp7aQkqeK_d5yKuHJ1zr338HE5CF0SPCe4pTd8jkkrJJcnaNLQTtRYtt3pH3-OZjlvMB5iHZGMT5BfVPmQPBhX9zHtYFvtX2OJ1hVnSkwV5KqP_Tb0DobBlPAOJcS-8ofejCb0lQ3ep_HmqrgvwQyU3h3SKOUjprd8gc48bLOb_egUPd_dPi0f6vXj_Wq5WNeGNrzURNqGacosw-CNFMJ3GhvSdJxo6ljbykZjyRthQXtwAreaAlBDSOulNIZO0erItRE2ap_CDtKnihDUuIjpRUEaPtw65XVHnWVcWG6ZIFxbaqygHixvWEdhYF0dWSbFnJPzvzyC1Xffiqufvofs9TGbTShjQ_-EvwBL7oHo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ashtiani, F.</creator><creator>Idjadi, M. H.</creator><creator>Hu, T. C.</creator><creator>Grillanda, S.</creator><creator>Neilson, D.</creator><creator>Earnshaw, M.</creator><creator>Cappuzzo, M.</creator><creator>Kopf, R.</creator><creator>Tate, A.</creator><creator>Blanco-Redondo, A.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2242-6112</orcidid><orcidid>https://orcid.org/0000-0002-3024-5856</orcidid><orcidid>https://orcid.org/0000-0001-7149-1722</orcidid><orcidid>https://orcid.org/0009-0003-3821-9948</orcidid><orcidid>https://orcid.org/0000-0002-8418-9626</orcidid><orcidid>https://orcid.org/0000-0002-0237-3156</orcidid></search><sort><creationdate>20231201</creationdate><title>A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks</title><author>Ashtiani, F. ; Idjadi, M. H. ; Hu, T. C. ; Grillanda, S. ; Neilson, D. ; Earnshaw, M. ; Cappuzzo, M. ; Kopf, R. ; Tate, A. ; Blanco-Redondo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-19d24b34d40afc988f7b0c12751b3e46692b09528dabfae806b3aa3c116f99cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashtiani, F.</creatorcontrib><creatorcontrib>Idjadi, M. H.</creatorcontrib><creatorcontrib>Hu, T. C.</creatorcontrib><creatorcontrib>Grillanda, S.</creatorcontrib><creatorcontrib>Neilson, D.</creatorcontrib><creatorcontrib>Earnshaw, M.</creatorcontrib><creatorcontrib>Cappuzzo, M.</creatorcontrib><creatorcontrib>Kopf, R.</creatorcontrib><creatorcontrib>Tate, A.</creatorcontrib><creatorcontrib>Blanco-Redondo, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>APL photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashtiani, F.</au><au>Idjadi, M. H.</au><au>Hu, T. C.</au><au>Grillanda, S.</au><au>Neilson, D.</au><au>Earnshaw, M.</au><au>Cappuzzo, M.</au><au>Kopf, R.</au><au>Tate, A.</au><au>Blanco-Redondo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks</atitle><jtitle>APL photonics</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>121301</spage><epage>121301-7</epage><pages>121301-121301-7</pages><issn>2378-0967</issn><eissn>2378-0967</eissn><coden>APPHD2</coden><abstract>Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel surface-normal photodetector (SNPD) with an optical-in–electrical-out (O–E) nonlinear response to replace the camera sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than 10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the SNPD a promising O–E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed neural nonlinearity, successful classification simulations of the MNIST and Fashion MNIST datasets using the measured response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/5.0168959</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2242-6112</orcidid><orcidid>https://orcid.org/0000-0002-3024-5856</orcidid><orcidid>https://orcid.org/0000-0001-7149-1722</orcidid><orcidid>https://orcid.org/0009-0003-3821-9948</orcidid><orcidid>https://orcid.org/0000-0002-8418-9626</orcidid><orcidid>https://orcid.org/0000-0002-0237-3156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2378-0967
ispartof APL photonics, 2023-12, Vol.8 (12), p.121301-121301-7
issn 2378-0967
2378-0967
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fb73ed458d5d4815bd3cd83fad52473a
source AIP Open Access Journals
title A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20surface-normal%20photodetector%20as%20nonlinear%20activation%20function%20in%20diffractive%20optical%20neural%20networks&rft.jtitle=APL%20photonics&rft.au=Ashtiani,%20F.&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=121301&rft.epage=121301-7&rft.pages=121301-121301-7&rft.issn=2378-0967&rft.eissn=2378-0967&rft.coden=APPHD2&rft_id=info:doi/10.1063/5.0168959&rft_dat=%3Cscitation_doaj_%3Eapp%3C/scitation_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-19d24b34d40afc988f7b0c12751b3e46692b09528dabfae806b3aa3c116f99cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true