Loading…

A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications

Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarant...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.57615-57629
Main Authors: Xu, Rui, Gao, Steven, Izquierdo, Benito Sanz, Gu, Chao, Reynaert, Patrick, Standaert, Alexander, Gibbons, Gregory J., Bosch, Wolfgang, Gadringer, Michael Ernst, Li, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3
cites cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3
container_end_page 57629
container_issue
container_start_page 57615
container_title IEEE access
container_volume 8
creator Xu, Rui
Gao, Steven
Izquierdo, Benito Sanz
Gu, Chao
Reynaert, Patrick
Standaert, Alexander
Gibbons, Gregory J.
Bosch, Wolfgang
Gadringer, Michael Ernst
Li, Dong
description Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.
doi_str_mv 10.1109/ACCESS.2020.2981393
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9039653</ieee_id><doaj_id>oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1</doaj_id><sourcerecordid>2453664777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaKgqF_gS8DnrrmneazFGywIXvAxZNOJZuk2a9JV9OvtWhXnZWYOc84Mc4rihOAZIVif1U1zcX8_o5jiGdUVYZrtFAeUSF0yweTuv3q_OM55iceoRkiog6Kr0R28BXhH0aPzFG27sH2L5vG9bGIe0La5Ds8v5ZUN_Tf8AMm-QBo-Ud0P0Pc2Ix8TegoJOsgZNXG12vTB2SHEPqN6ve5-m6Niz9suw_FPPiweLy8emutyfnt109Tz0gnKh1IyAIUZdwvprfJYatZWAC3FljgCTrWCY-0cg0pUinoOlZdEcKIrYSm07LC4mXTbaJdmncLKpg8TbTDfQEzPxqYhuA6MXyjJpfLcQ8Wx0tq1WnuxDcDCkVHrdNJap_i6gTyYZdykfjzfUD6-VHKl1DjFpimXYs4J_N9Wgs3WJTO5ZLYumR-XRtbJxAoA8MfQmGkpGPsC3fKNnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453664777</pqid></control><display><type>article</type><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><source>IEEE Xplore Open Access Journals</source><creator>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</creator><creatorcontrib>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</creatorcontrib><description>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981393</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>additive manufacturing (AM) ; Antenna arrays ; Antenna measurements ; Antennas ; Bandwidth ; Broadband ; Broadband antennas ; Carrier frequencies ; Channel capacity ; Fabry--Perot cavity (FPC) ; Fabry-Perot interferometers ; High gain ; Horn antennas ; Low cost ; low-terahertz ; Millimeter waves ; Mobile communication systems ; Terahertz frequencies ; Three dimensional printing ; three-dimensional printing (3DP) ; Transmission loss ; Wireless communication ; Wireless communications</subject><ispartof>IEEE access, 2020, Vol.8, p.57615-57629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</citedby><cites>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</cites><orcidid>0000-0002-2778-5456 ; 0000-0002-8254-2668 ; 0000-0001-5061-9870 ; 0000-0001-8722-6165 ; 0000-0002-5987-7929 ; 0000-0002-8633-9958 ; 0000-0002-9183-7820 ; 0000-0002-9312-6811 ; 0000-0001-7313-2520 ; 0000-0002-7402-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9039653$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Gao, Steven</creatorcontrib><creatorcontrib>Izquierdo, Benito Sanz</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Reynaert, Patrick</creatorcontrib><creatorcontrib>Standaert, Alexander</creatorcontrib><creatorcontrib>Gibbons, Gregory J.</creatorcontrib><creatorcontrib>Bosch, Wolfgang</creatorcontrib><creatorcontrib>Gadringer, Michael Ernst</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</description><subject>additive manufacturing (AM)</subject><subject>Antenna arrays</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>Carrier frequencies</subject><subject>Channel capacity</subject><subject>Fabry--Perot cavity (FPC)</subject><subject>Fabry-Perot interferometers</subject><subject>High gain</subject><subject>Horn antennas</subject><subject>Low cost</subject><subject>low-terahertz</subject><subject>Millimeter waves</subject><subject>Mobile communication systems</subject><subject>Terahertz frequencies</subject><subject>Three dimensional printing</subject><subject>three-dimensional printing (3DP)</subject><subject>Transmission loss</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaKgqF_gS8DnrrmneazFGywIXvAxZNOJZuk2a9JV9OvtWhXnZWYOc84Mc4rihOAZIVif1U1zcX8_o5jiGdUVYZrtFAeUSF0yweTuv3q_OM55iceoRkiog6Kr0R28BXhH0aPzFG27sH2L5vG9bGIe0La5Ds8v5ZUN_Tf8AMm-QBo-Ud0P0Pc2Ix8TegoJOsgZNXG12vTB2SHEPqN6ve5-m6Niz9suw_FPPiweLy8emutyfnt109Tz0gnKh1IyAIUZdwvprfJYatZWAC3FljgCTrWCY-0cg0pUinoOlZdEcKIrYSm07LC4mXTbaJdmncLKpg8TbTDfQEzPxqYhuA6MXyjJpfLcQ8Wx0tq1WnuxDcDCkVHrdNJap_i6gTyYZdykfjzfUD6-VHKl1DjFpimXYs4J_N9Wgs3WJTO5ZLYumR-XRtbJxAoA8MfQmGkpGPsC3fKNnA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xu, Rui</creator><creator>Gao, Steven</creator><creator>Izquierdo, Benito Sanz</creator><creator>Gu, Chao</creator><creator>Reynaert, Patrick</creator><creator>Standaert, Alexander</creator><creator>Gibbons, Gregory J.</creator><creator>Bosch, Wolfgang</creator><creator>Gadringer, Michael Ernst</creator><creator>Li, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2778-5456</orcidid><orcidid>https://orcid.org/0000-0002-8254-2668</orcidid><orcidid>https://orcid.org/0000-0001-5061-9870</orcidid><orcidid>https://orcid.org/0000-0001-8722-6165</orcidid><orcidid>https://orcid.org/0000-0002-5987-7929</orcidid><orcidid>https://orcid.org/0000-0002-8633-9958</orcidid><orcidid>https://orcid.org/0000-0002-9183-7820</orcidid><orcidid>https://orcid.org/0000-0002-9312-6811</orcidid><orcidid>https://orcid.org/0000-0001-7313-2520</orcidid><orcidid>https://orcid.org/0000-0002-7402-9223</orcidid></search><sort><creationdate>2020</creationdate><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><author>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>additive manufacturing (AM)</topic><topic>Antenna arrays</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>Carrier frequencies</topic><topic>Channel capacity</topic><topic>Fabry--Perot cavity (FPC)</topic><topic>Fabry-Perot interferometers</topic><topic>High gain</topic><topic>Horn antennas</topic><topic>Low cost</topic><topic>low-terahertz</topic><topic>Millimeter waves</topic><topic>Mobile communication systems</topic><topic>Terahertz frequencies</topic><topic>Three dimensional printing</topic><topic>three-dimensional printing (3DP)</topic><topic>Transmission loss</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Gao, Steven</creatorcontrib><creatorcontrib>Izquierdo, Benito Sanz</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Reynaert, Patrick</creatorcontrib><creatorcontrib>Standaert, Alexander</creatorcontrib><creatorcontrib>Gibbons, Gregory J.</creatorcontrib><creatorcontrib>Bosch, Wolfgang</creatorcontrib><creatorcontrib>Gadringer, Michael Ernst</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Rui</au><au>Gao, Steven</au><au>Izquierdo, Benito Sanz</au><au>Gu, Chao</au><au>Reynaert, Patrick</au><au>Standaert, Alexander</au><au>Gibbons, Gregory J.</au><au>Bosch, Wolfgang</au><au>Gadringer, Michael Ernst</au><au>Li, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>57615</spage><epage>57629</epage><pages>57615-57629</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981393</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2778-5456</orcidid><orcidid>https://orcid.org/0000-0002-8254-2668</orcidid><orcidid>https://orcid.org/0000-0001-5061-9870</orcidid><orcidid>https://orcid.org/0000-0001-8722-6165</orcidid><orcidid>https://orcid.org/0000-0002-5987-7929</orcidid><orcidid>https://orcid.org/0000-0002-8633-9958</orcidid><orcidid>https://orcid.org/0000-0002-9183-7820</orcidid><orcidid>https://orcid.org/0000-0002-9312-6811</orcidid><orcidid>https://orcid.org/0000-0001-7313-2520</orcidid><orcidid>https://orcid.org/0000-0002-7402-9223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.57615-57629
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1
source IEEE Xplore Open Access Journals
subjects additive manufacturing (AM)
Antenna arrays
Antenna measurements
Antennas
Bandwidth
Broadband
Broadband antennas
Carrier frequencies
Channel capacity
Fabry--Perot cavity (FPC)
Fabry-Perot interferometers
High gain
Horn antennas
Low cost
low-terahertz
Millimeter waves
Mobile communication systems
Terahertz frequencies
Three dimensional printing
three-dimensional printing (3DP)
Transmission loss
Wireless communication
Wireless communications
title A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Broadband%20Low-Cost%20and%20High-Gain%20Low-Terahertz%20Antennas%20for%20Wireless%20Communications%20Applications&rft.jtitle=IEEE%20access&rft.au=Xu,%20Rui&rft.date=2020&rft.volume=8&rft.spage=57615&rft.epage=57629&rft.pages=57615-57629&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981393&rft_dat=%3Cproquest_doaj_%3E2453664777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453664777&rft_id=info:pmid/&rft_ieee_id=9039653&rfr_iscdi=true