Loading…
A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications
Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarant...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.57615-57629 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3 |
container_end_page | 57629 |
container_issue | |
container_start_page | 57615 |
container_title | IEEE access |
container_volume | 8 |
creator | Xu, Rui Gao, Steven Izquierdo, Benito Sanz Gu, Chao Reynaert, Patrick Standaert, Alexander Gibbons, Gregory J. Bosch, Wolfgang Gadringer, Michael Ernst Li, Dong |
description | Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications. |
doi_str_mv | 10.1109/ACCESS.2020.2981393 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9039653</ieee_id><doaj_id>oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1</doaj_id><sourcerecordid>2453664777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</originalsourceid><addsrcrecordid>eNpNUdtKxDAQLaKgqF_gS8DnrrmneazFGywIXvAxZNOJZuk2a9JV9OvtWhXnZWYOc84Mc4rihOAZIVif1U1zcX8_o5jiGdUVYZrtFAeUSF0yweTuv3q_OM55iceoRkiog6Kr0R28BXhH0aPzFG27sH2L5vG9bGIe0La5Ds8v5ZUN_Tf8AMm-QBo-Ud0P0Pc2Ix8TegoJOsgZNXG12vTB2SHEPqN6ve5-m6Niz9suw_FPPiweLy8emutyfnt109Tz0gnKh1IyAIUZdwvprfJYatZWAC3FljgCTrWCY-0cg0pUinoOlZdEcKIrYSm07LC4mXTbaJdmncLKpg8TbTDfQEzPxqYhuA6MXyjJpfLcQ8Wx0tq1WnuxDcDCkVHrdNJap_i6gTyYZdykfjzfUD6-VHKl1DjFpimXYs4J_N9Wgs3WJTO5ZLYumR-XRtbJxAoA8MfQmGkpGPsC3fKNnA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453664777</pqid></control><display><type>article</type><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><source>IEEE Xplore Open Access Journals</source><creator>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</creator><creatorcontrib>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</creatorcontrib><description>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981393</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>additive manufacturing (AM) ; Antenna arrays ; Antenna measurements ; Antennas ; Bandwidth ; Broadband ; Broadband antennas ; Carrier frequencies ; Channel capacity ; Fabry--Perot cavity (FPC) ; Fabry-Perot interferometers ; High gain ; Horn antennas ; Low cost ; low-terahertz ; Millimeter waves ; Mobile communication systems ; Terahertz frequencies ; Three dimensional printing ; three-dimensional printing (3DP) ; Transmission loss ; Wireless communication ; Wireless communications</subject><ispartof>IEEE access, 2020, Vol.8, p.57615-57629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</citedby><cites>FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</cites><orcidid>0000-0002-2778-5456 ; 0000-0002-8254-2668 ; 0000-0001-5061-9870 ; 0000-0001-8722-6165 ; 0000-0002-5987-7929 ; 0000-0002-8633-9958 ; 0000-0002-9183-7820 ; 0000-0002-9312-6811 ; 0000-0001-7313-2520 ; 0000-0002-7402-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9039653$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Gao, Steven</creatorcontrib><creatorcontrib>Izquierdo, Benito Sanz</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Reynaert, Patrick</creatorcontrib><creatorcontrib>Standaert, Alexander</creatorcontrib><creatorcontrib>Gibbons, Gregory J.</creatorcontrib><creatorcontrib>Bosch, Wolfgang</creatorcontrib><creatorcontrib>Gadringer, Michael Ernst</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</description><subject>additive manufacturing (AM)</subject><subject>Antenna arrays</subject><subject>Antenna measurements</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>Carrier frequencies</subject><subject>Channel capacity</subject><subject>Fabry--Perot cavity (FPC)</subject><subject>Fabry-Perot interferometers</subject><subject>High gain</subject><subject>Horn antennas</subject><subject>Low cost</subject><subject>low-terahertz</subject><subject>Millimeter waves</subject><subject>Mobile communication systems</subject><subject>Terahertz frequencies</subject><subject>Three dimensional printing</subject><subject>three-dimensional printing (3DP)</subject><subject>Transmission loss</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAQLaKgqF_gS8DnrrmneazFGywIXvAxZNOJZuk2a9JV9OvtWhXnZWYOc84Mc4rihOAZIVif1U1zcX8_o5jiGdUVYZrtFAeUSF0yweTuv3q_OM55iceoRkiog6Kr0R28BXhH0aPzFG27sH2L5vG9bGIe0La5Ds8v5ZUN_Tf8AMm-QBo-Ud0P0Pc2Ix8TegoJOsgZNXG12vTB2SHEPqN6ve5-m6Niz9suw_FPPiweLy8emutyfnt109Tz0gnKh1IyAIUZdwvprfJYatZWAC3FljgCTrWCY-0cg0pUinoOlZdEcKIrYSm07LC4mXTbaJdmncLKpg8TbTDfQEzPxqYhuA6MXyjJpfLcQ8Wx0tq1WnuxDcDCkVHrdNJap_i6gTyYZdykfjzfUD6-VHKl1DjFpimXYs4J_N9Wgs3WJTO5ZLYumR-XRtbJxAoA8MfQmGkpGPsC3fKNnA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xu, Rui</creator><creator>Gao, Steven</creator><creator>Izquierdo, Benito Sanz</creator><creator>Gu, Chao</creator><creator>Reynaert, Patrick</creator><creator>Standaert, Alexander</creator><creator>Gibbons, Gregory J.</creator><creator>Bosch, Wolfgang</creator><creator>Gadringer, Michael Ernst</creator><creator>Li, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2778-5456</orcidid><orcidid>https://orcid.org/0000-0002-8254-2668</orcidid><orcidid>https://orcid.org/0000-0001-5061-9870</orcidid><orcidid>https://orcid.org/0000-0001-8722-6165</orcidid><orcidid>https://orcid.org/0000-0002-5987-7929</orcidid><orcidid>https://orcid.org/0000-0002-8633-9958</orcidid><orcidid>https://orcid.org/0000-0002-9183-7820</orcidid><orcidid>https://orcid.org/0000-0002-9312-6811</orcidid><orcidid>https://orcid.org/0000-0001-7313-2520</orcidid><orcidid>https://orcid.org/0000-0002-7402-9223</orcidid></search><sort><creationdate>2020</creationdate><title>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</title><author>Xu, Rui ; Gao, Steven ; Izquierdo, Benito Sanz ; Gu, Chao ; Reynaert, Patrick ; Standaert, Alexander ; Gibbons, Gregory J. ; Bosch, Wolfgang ; Gadringer, Michael Ernst ; Li, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>additive manufacturing (AM)</topic><topic>Antenna arrays</topic><topic>Antenna measurements</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>Carrier frequencies</topic><topic>Channel capacity</topic><topic>Fabry--Perot cavity (FPC)</topic><topic>Fabry-Perot interferometers</topic><topic>High gain</topic><topic>Horn antennas</topic><topic>Low cost</topic><topic>low-terahertz</topic><topic>Millimeter waves</topic><topic>Mobile communication systems</topic><topic>Terahertz frequencies</topic><topic>Three dimensional printing</topic><topic>three-dimensional printing (3DP)</topic><topic>Transmission loss</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Rui</creatorcontrib><creatorcontrib>Gao, Steven</creatorcontrib><creatorcontrib>Izquierdo, Benito Sanz</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Reynaert, Patrick</creatorcontrib><creatorcontrib>Standaert, Alexander</creatorcontrib><creatorcontrib>Gibbons, Gregory J.</creatorcontrib><creatorcontrib>Bosch, Wolfgang</creatorcontrib><creatorcontrib>Gadringer, Michael Ernst</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Rui</au><au>Gao, Steven</au><au>Izquierdo, Benito Sanz</au><au>Gu, Chao</au><au>Reynaert, Patrick</au><au>Standaert, Alexander</au><au>Gibbons, Gregory J.</au><au>Bosch, Wolfgang</au><au>Gadringer, Michael Ernst</au><au>Li, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>57615</spage><epage>57629</epage><pages>57615-57629</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6 th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981393</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2778-5456</orcidid><orcidid>https://orcid.org/0000-0002-8254-2668</orcidid><orcidid>https://orcid.org/0000-0001-5061-9870</orcidid><orcidid>https://orcid.org/0000-0001-8722-6165</orcidid><orcidid>https://orcid.org/0000-0002-5987-7929</orcidid><orcidid>https://orcid.org/0000-0002-8633-9958</orcidid><orcidid>https://orcid.org/0000-0002-9183-7820</orcidid><orcidid>https://orcid.org/0000-0002-9312-6811</orcidid><orcidid>https://orcid.org/0000-0001-7313-2520</orcidid><orcidid>https://orcid.org/0000-0002-7402-9223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.57615-57629 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fb76467f4fe840799cd99f55555e05c1 |
source | IEEE Xplore Open Access Journals |
subjects | additive manufacturing (AM) Antenna arrays Antenna measurements Antennas Bandwidth Broadband Broadband antennas Carrier frequencies Channel capacity Fabry--Perot cavity (FPC) Fabry-Perot interferometers High gain Horn antennas Low cost low-terahertz Millimeter waves Mobile communication systems Terahertz frequencies Three dimensional printing three-dimensional printing (3DP) Transmission loss Wireless communication Wireless communications |
title | A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Broadband%20Low-Cost%20and%20High-Gain%20Low-Terahertz%20Antennas%20for%20Wireless%20Communications%20Applications&rft.jtitle=IEEE%20access&rft.au=Xu,%20Rui&rft.date=2020&rft.volume=8&rft.spage=57615&rft.epage=57629&rft.pages=57615-57629&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981393&rft_dat=%3Cproquest_doaj_%3E2453664777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-63ee7034cb6fa7f0693d8eed20a1c1ec7d5409cc3e85872f4e8f61541985a2ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453664777&rft_id=info:pmid/&rft_ieee_id=9039653&rfr_iscdi=true |