Loading…
Coalescence of two growing bubbles in a Hele–Shaw cell
An understanding of the dynamics of growth-driven coalescence is important in diverse fields across natural science and engineering. Motivated by the bubble coalescence in magma during volcanic eruptions, we study both experimentally and theoretically the coalescence of two growing bubbles in a Hele...
Saved in:
Published in: | Scientific reports 2022-01, Vol.12 (1), p.1270-1270, Article 1270 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73 |
container_end_page | 1270 |
container_issue | 1 |
container_start_page | 1270 |
container_title | Scientific reports |
container_volume | 12 |
creator | Ohashi, Masatoshi Toramaru, Atsushi Namiki, Atsuko |
description | An understanding of the dynamics of growth-driven coalescence is important in diverse fields across natural science and engineering. Motivated by the bubble coalescence in magma during volcanic eruptions, we study both experimentally and theoretically the coalescence of two growing bubbles in a Hele–Shaw cell. In our system, bubbles grow by gas expansion due to decompression and the diffusional influx of dissolved gas in the liquid. Our experiments show that the evolution of film thickness and bubble shape depends on viscosity, decompression rate, and cell gap. Through a scaling analysis and a perturbation approximation, we find that the hydrodynamic interaction between two bubbles is characterized by a film capillary number
C
a
f
=
(
η
R
˙
/
σ
)
(
R
/
D
)
2
depending on viscosity
η
, bubble radius
R
, growth rate
R
˙
, interfacial tension
σ
, and cell gap
D
. The experimental results demonstrate that the film capillary number solely determines the bubble distortion just before coalescence. Under our experimental conditions, bubble coalescence occurs below a critical value of a nominal film capillary number defined as a film capillary number evaluated when two undeformed circular bubbles come into contact. |
doi_str_mv | 10.1038/s41598-022-05252-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb83160153f94b378d9d1a6d92574efd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb83160153f94b378d9d1a6d92574efd</doaj_id><sourcerecordid>2622658503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAkdiwCfh2fNkgoRHQSpVYAGvL8SXNKBMXO2HUHe_AG_IkuJNSWhZ4Y8vnO_-5_Ag9J_g1wUy9KZyAVi2mtMVAgbbwCB1TzKGljNLH995H6LSULa4HqOZEP0VHDLAEougxUptkx1BcmFxoUmzmfWr6nPbD1Dfd0nU11gxTY5uzMIZfP35-vrT7xoVxfIaeRDuWcHp7n6CvH95_2Zy1F58-nm_eXbROYDG3ROroHI-BeN9pzrzqKCcuAMiIhRJEehmYr32BdDZSwjVA1NJzAV4HyU7Q-arrk92aqzzsbL42yQ7m8JFyb2yeBzcGEzvFiMAEWNS8Y1J57YkVXlOQPERftd6uWldLtwu-Dj1nOz4QfRiZhkvTp-9GSSU00Crw6lYgp29LKLPZDeVmG3YKaSmGCkoFKMCsoi__QbdpyVNd1YFiFZKiUnSlXE6l5BDvmiHY3PhsVp9N9dkcfDZQk17cH-Mu5Y-rFWArUGpo6kP-W_s_sr8Bdk-x4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622385076</pqid></control><display><type>article</type><title>Coalescence of two growing bubbles in a Hele–Shaw cell</title><source>PMC (PubMed Central)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ohashi, Masatoshi ; Toramaru, Atsushi ; Namiki, Atsuko</creator><creatorcontrib>Ohashi, Masatoshi ; Toramaru, Atsushi ; Namiki, Atsuko</creatorcontrib><description>An understanding of the dynamics of growth-driven coalescence is important in diverse fields across natural science and engineering. Motivated by the bubble coalescence in magma during volcanic eruptions, we study both experimentally and theoretically the coalescence of two growing bubbles in a Hele–Shaw cell. In our system, bubbles grow by gas expansion due to decompression and the diffusional influx of dissolved gas in the liquid. Our experiments show that the evolution of film thickness and bubble shape depends on viscosity, decompression rate, and cell gap. Through a scaling analysis and a perturbation approximation, we find that the hydrodynamic interaction between two bubbles is characterized by a film capillary number
C
a
f
=
(
η
R
˙
/
σ
)
(
R
/
D
)
2
depending on viscosity
η
, bubble radius
R
, growth rate
R
˙
, interfacial tension
σ
, and cell gap
D
. The experimental results demonstrate that the film capillary number solely determines the bubble distortion just before coalescence. Under our experimental conditions, bubble coalescence occurs below a critical value of a nominal film capillary number defined as a film capillary number evaluated when two undeformed circular bubbles come into contact.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-05252-5</identifier><identifier>PMID: 35075182</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1039 ; 639/301/923/614 ; 639/766/189 ; Bubbles ; Coalescence ; Decompression ; Growth rate ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Viscosity ; Volcanic eruptions</subject><ispartof>Scientific reports, 2022-01, Vol.12 (1), p.1270-1270, Article 1270</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73</citedby><cites>FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622385076/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622385076?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35075182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohashi, Masatoshi</creatorcontrib><creatorcontrib>Toramaru, Atsushi</creatorcontrib><creatorcontrib>Namiki, Atsuko</creatorcontrib><title>Coalescence of two growing bubbles in a Hele–Shaw cell</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>An understanding of the dynamics of growth-driven coalescence is important in diverse fields across natural science and engineering. Motivated by the bubble coalescence in magma during volcanic eruptions, we study both experimentally and theoretically the coalescence of two growing bubbles in a Hele–Shaw cell. In our system, bubbles grow by gas expansion due to decompression and the diffusional influx of dissolved gas in the liquid. Our experiments show that the evolution of film thickness and bubble shape depends on viscosity, decompression rate, and cell gap. Through a scaling analysis and a perturbation approximation, we find that the hydrodynamic interaction between two bubbles is characterized by a film capillary number
C
a
f
=
(
η
R
˙
/
σ
)
(
R
/
D
)
2
depending on viscosity
η
, bubble radius
R
, growth rate
R
˙
, interfacial tension
σ
, and cell gap
D
. The experimental results demonstrate that the film capillary number solely determines the bubble distortion just before coalescence. Under our experimental conditions, bubble coalescence occurs below a critical value of a nominal film capillary number defined as a film capillary number evaluated when two undeformed circular bubbles come into contact.</description><subject>639/301/1034/1039</subject><subject>639/301/923/614</subject><subject>639/766/189</subject><subject>Bubbles</subject><subject>Coalescence</subject><subject>Decompression</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Viscosity</subject><subject>Volcanic eruptions</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1DAUhi0EolXpC7BAkdiwCfh2fNkgoRHQSpVYAGvL8SXNKBMXO2HUHe_AG_IkuJNSWhZ4Y8vnO_-5_Ag9J_g1wUy9KZyAVi2mtMVAgbbwCB1TzKGljNLH995H6LSULa4HqOZEP0VHDLAEougxUptkx1BcmFxoUmzmfWr6nPbD1Dfd0nU11gxTY5uzMIZfP35-vrT7xoVxfIaeRDuWcHp7n6CvH95_2Zy1F58-nm_eXbROYDG3ROroHI-BeN9pzrzqKCcuAMiIhRJEehmYr32BdDZSwjVA1NJzAV4HyU7Q-arrk92aqzzsbL42yQ7m8JFyb2yeBzcGEzvFiMAEWNS8Y1J57YkVXlOQPERftd6uWldLtwu-Dj1nOz4QfRiZhkvTp-9GSSU00Crw6lYgp29LKLPZDeVmG3YKaSmGCkoFKMCsoi__QbdpyVNd1YFiFZKiUnSlXE6l5BDvmiHY3PhsVp9N9dkcfDZQk17cH-Mu5Y-rFWArUGpo6kP-W_s_sr8Bdk-x4g</recordid><startdate>20220124</startdate><enddate>20220124</enddate><creator>Ohashi, Masatoshi</creator><creator>Toramaru, Atsushi</creator><creator>Namiki, Atsuko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220124</creationdate><title>Coalescence of two growing bubbles in a Hele–Shaw cell</title><author>Ohashi, Masatoshi ; Toramaru, Atsushi ; Namiki, Atsuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1034/1039</topic><topic>639/301/923/614</topic><topic>639/766/189</topic><topic>Bubbles</topic><topic>Coalescence</topic><topic>Decompression</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Viscosity</topic><topic>Volcanic eruptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohashi, Masatoshi</creatorcontrib><creatorcontrib>Toramaru, Atsushi</creatorcontrib><creatorcontrib>Namiki, Atsuko</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohashi, Masatoshi</au><au>Toramaru, Atsushi</au><au>Namiki, Atsuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalescence of two growing bubbles in a Hele–Shaw cell</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-01-24</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>1270</spage><epage>1270</epage><pages>1270-1270</pages><artnum>1270</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>An understanding of the dynamics of growth-driven coalescence is important in diverse fields across natural science and engineering. Motivated by the bubble coalescence in magma during volcanic eruptions, we study both experimentally and theoretically the coalescence of two growing bubbles in a Hele–Shaw cell. In our system, bubbles grow by gas expansion due to decompression and the diffusional influx of dissolved gas in the liquid. Our experiments show that the evolution of film thickness and bubble shape depends on viscosity, decompression rate, and cell gap. Through a scaling analysis and a perturbation approximation, we find that the hydrodynamic interaction between two bubbles is characterized by a film capillary number
C
a
f
=
(
η
R
˙
/
σ
)
(
R
/
D
)
2
depending on viscosity
η
, bubble radius
R
, growth rate
R
˙
, interfacial tension
σ
, and cell gap
D
. The experimental results demonstrate that the film capillary number solely determines the bubble distortion just before coalescence. Under our experimental conditions, bubble coalescence occurs below a critical value of a nominal film capillary number defined as a film capillary number evaluated when two undeformed circular bubbles come into contact.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35075182</pmid><doi>10.1038/s41598-022-05252-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-01, Vol.12 (1), p.1270-1270, Article 1270 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fb83160153f94b378d9d1a6d92574efd |
source | PMC (PubMed Central); Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1034/1039 639/301/923/614 639/766/189 Bubbles Coalescence Decompression Growth rate Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Viscosity Volcanic eruptions |
title | Coalescence of two growing bubbles in a Hele–Shaw cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalescence%20of%20two%20growing%20bubbles%20in%20a%20Hele%E2%80%93Shaw%20cell&rft.jtitle=Scientific%20reports&rft.au=Ohashi,%20Masatoshi&rft.date=2022-01-24&rft.volume=12&rft.issue=1&rft.spage=1270&rft.epage=1270&rft.pages=1270-1270&rft.artnum=1270&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-05252-5&rft_dat=%3Cproquest_doaj_%3E2622658503%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-179fcc4fe1ddb943d8b241ce557f068617d7e3d94157caf214955f97d465d9e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622385076&rft_id=info:pmid/35075182&rfr_iscdi=true |