Loading…

Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework

The interplay of exchange rates among nations significantly influences both international and domestic trade, underscoring the pivotal role of the foreign exchange market (Forex) in a country's economic landscape. Forex fluctuations have a significant impact on the everyday lives of both govern...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data 2024-10, Vol.11 (1), p.143-16, Article 143
Main Authors: Bilal, Muhammad, Aamir, Muhammad, Abdullah, Saleem, Norrulashikin, Siti Mariam, Alqasem, Ohud A., Elwahab, Maysaa E. A., Khan, Ilyas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c339t-f1e2fb087ac43ac489771bd39f9e38eaf9b17fcfd142de0d0836f46e4d513d403
container_end_page 16
container_issue 1
container_start_page 143
container_title Journal of big data
container_volume 11
creator Bilal, Muhammad
Aamir, Muhammad
Abdullah, Saleem
Norrulashikin, Siti Mariam
Alqasem, Ohud A.
Elwahab, Maysaa E. A.
Khan, Ilyas
description The interplay of exchange rates among nations significantly influences both international and domestic trade, underscoring the pivotal role of the foreign exchange market (Forex) in a country's economic landscape. Forex fluctuations have a significant impact on the everyday lives of both government agencies and the public population, directly influencing a country's prosperity or misfortune. This work proposes an advanced fuzzy time series model that incorporates domain universe sub-partitioning, parameter adjustment optimization methodologies, and interval forecasting methods. We utilized this model to examine annual exchange rate patterns between the Pakistani rupee (PKR) and the US dollar (US$), comparing its forecast accuracy to that of other models. Our proposed methodology outperformed existing methodologies in terms of forecasting precision, providing stakeholders with valuable insights for making informed, data-driven business decisions that benefit both individual firms and the country overall.
doi_str_mv 10.1186/s40537-024-01003-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fb88bbdb055c4ff8b6dae10d946a385a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fb88bbdb055c4ff8b6dae10d946a385a</doaj_id><sourcerecordid>3116758709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f1e2fb087ac43ac489771bd39f9e38eaf9b17fcfd142de0d0836f46e4d513d403</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiPUSlSlf4CTJc6hM7ETO9xQxUelIi70bE3i8eJlEy-2t7D99aQbBJw4WGONnue1pbeqXiK8RjTddVbQSl1Do2pAAFnrZ9VFg31XI2J79s_9eXWV8xYAUC5Opy6q8IkLTTHtv8Yc5o3wMfHPN4LcA80jTzyXLMIsHuKOStiFcjwRI-XyRB9ODokpuuADO-EPj49HUcLEInMKnIVPNPGPmL69qM497TJf_Z6X1f37d19uPtZ3nz_c3ry9q0cp-1J75MYPYDSNSi7H9Frj4GTve5aGyfcDaj96h6pxDA6M7LzqWLkWpVMgL6vbNddF2tp9ChOlo40U7GkR08ZSKmHcsfWDMcPgBmjbUXlvhs4RI7hedSRNS0vWqzVrn-L3A-dit_GQ5uX7ViJ2ujUa-oVqVmpMMefE_s-rCPapIbs2ZJeG7KkhqxdJrlJe4HnD6W_0f6xfQ3SWKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116758709</pqid></control><display><type>article</type><title>Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework</title><source>ABI/INFORM global</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Bilal, Muhammad ; Aamir, Muhammad ; Abdullah, Saleem ; Norrulashikin, Siti Mariam ; Alqasem, Ohud A. ; Elwahab, Maysaa E. A. ; Khan, Ilyas</creator><creatorcontrib>Bilal, Muhammad ; Aamir, Muhammad ; Abdullah, Saleem ; Norrulashikin, Siti Mariam ; Alqasem, Ohud A. ; Elwahab, Maysaa E. A. ; Khan, Ilyas</creatorcontrib><description>The interplay of exchange rates among nations significantly influences both international and domestic trade, underscoring the pivotal role of the foreign exchange market (Forex) in a country's economic landscape. Forex fluctuations have a significant impact on the everyday lives of both government agencies and the public population, directly influencing a country's prosperity or misfortune. This work proposes an advanced fuzzy time series model that incorporates domain universe sub-partitioning, parameter adjustment optimization methodologies, and interval forecasting methods. We utilized this model to examine annual exchange rate patterns between the Pakistani rupee (PKR) and the US dollar (US$), comparing its forecast accuracy to that of other models. Our proposed methodology outperformed existing methodologies in terms of forecasting precision, providing stakeholders with valuable insights for making informed, data-driven business decisions that benefit both individual firms and the country overall.</description><identifier>ISSN: 2196-1115</identifier><identifier>EISSN: 2196-1115</identifier><identifier>DOI: 10.1186/s40537-024-01003-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>American dollar ; Astronomical models ; Autoregressive integrated moving average ; Average forecast error rate ; Big Data ; Central banks ; Communications Engineering ; Computational Science and Engineering ; Computer Science ; Currency ; Data Mining and Knowledge Discovery ; Database Management ; Decision making ; Economic development ; Economic growth ; Economic statistics ; Forecasting ; Forecasting techniques ; Foreign exchange markets ; Foreign exchange rates ; Forex ; Fuzzy sets ; Fuzzy time series ; Global economy ; Information Storage and Retrieval ; International trade ; Mathematical Applications in Computer Science ; Networks ; Parameter modification ; Set theory ; Time series ; Trends</subject><ispartof>Journal of big data, 2024-10, Vol.11 (1), p.143-16, Article 143</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-f1e2fb087ac43ac489771bd39f9e38eaf9b17fcfd142de0d0836f46e4d513d403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3116758709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11668,21374,25732,27903,27904,33590,36039,36991,38495,43712,43874,44342,44569</link.rule.ids></links><search><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Abdullah, Saleem</creatorcontrib><creatorcontrib>Norrulashikin, Siti Mariam</creatorcontrib><creatorcontrib>Alqasem, Ohud A.</creatorcontrib><creatorcontrib>Elwahab, Maysaa E. A.</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><title>Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework</title><title>Journal of big data</title><addtitle>J Big Data</addtitle><description>The interplay of exchange rates among nations significantly influences both international and domestic trade, underscoring the pivotal role of the foreign exchange market (Forex) in a country's economic landscape. Forex fluctuations have a significant impact on the everyday lives of both government agencies and the public population, directly influencing a country's prosperity or misfortune. This work proposes an advanced fuzzy time series model that incorporates domain universe sub-partitioning, parameter adjustment optimization methodologies, and interval forecasting methods. We utilized this model to examine annual exchange rate patterns between the Pakistani rupee (PKR) and the US dollar (US$), comparing its forecast accuracy to that of other models. Our proposed methodology outperformed existing methodologies in terms of forecasting precision, providing stakeholders with valuable insights for making informed, data-driven business decisions that benefit both individual firms and the country overall.</description><subject>American dollar</subject><subject>Astronomical models</subject><subject>Autoregressive integrated moving average</subject><subject>Average forecast error rate</subject><subject>Big Data</subject><subject>Central banks</subject><subject>Communications Engineering</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Currency</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Decision making</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Economic statistics</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Foreign exchange markets</subject><subject>Foreign exchange rates</subject><subject>Forex</subject><subject>Fuzzy sets</subject><subject>Fuzzy time series</subject><subject>Global economy</subject><subject>Information Storage and Retrieval</subject><subject>International trade</subject><subject>Mathematical Applications in Computer Science</subject><subject>Networks</subject><subject>Parameter modification</subject><subject>Set theory</subject><subject>Time series</subject><subject>Trends</subject><issn>2196-1115</issn><issn>2196-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>COVID</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiPUSlSlf4CTJc6hM7ETO9xQxUelIi70bE3i8eJlEy-2t7D99aQbBJw4WGONnue1pbeqXiK8RjTddVbQSl1Do2pAAFnrZ9VFg31XI2J79s_9eXWV8xYAUC5Opy6q8IkLTTHtv8Yc5o3wMfHPN4LcA80jTzyXLMIsHuKOStiFcjwRI-XyRB9ODokpuuADO-EPj49HUcLEInMKnIVPNPGPmL69qM497TJf_Z6X1f37d19uPtZ3nz_c3ry9q0cp-1J75MYPYDSNSi7H9Frj4GTve5aGyfcDaj96h6pxDA6M7LzqWLkWpVMgL6vbNddF2tp9ChOlo40U7GkR08ZSKmHcsfWDMcPgBmjbUXlvhs4RI7hedSRNS0vWqzVrn-L3A-dit_GQ5uX7ViJ2ujUa-oVqVmpMMefE_s-rCPapIbs2ZJeG7KkhqxdJrlJe4HnD6W_0f6xfQ3SWKg</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Bilal, Muhammad</creator><creator>Aamir, Muhammad</creator><creator>Abdullah, Saleem</creator><creator>Norrulashikin, Siti Mariam</creator><creator>Alqasem, Ohud A.</creator><creator>Elwahab, Maysaa E. A.</creator><creator>Khan, Ilyas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20241015</creationdate><title>Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework</title><author>Bilal, Muhammad ; Aamir, Muhammad ; Abdullah, Saleem ; Norrulashikin, Siti Mariam ; Alqasem, Ohud A. ; Elwahab, Maysaa E. A. ; Khan, Ilyas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f1e2fb087ac43ac489771bd39f9e38eaf9b17fcfd142de0d0836f46e4d513d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>American dollar</topic><topic>Astronomical models</topic><topic>Autoregressive integrated moving average</topic><topic>Average forecast error rate</topic><topic>Big Data</topic><topic>Central banks</topic><topic>Communications Engineering</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Currency</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Decision making</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Economic statistics</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Foreign exchange markets</topic><topic>Foreign exchange rates</topic><topic>Forex</topic><topic>Fuzzy sets</topic><topic>Fuzzy time series</topic><topic>Global economy</topic><topic>Information Storage and Retrieval</topic><topic>International trade</topic><topic>Mathematical Applications in Computer Science</topic><topic>Networks</topic><topic>Parameter modification</topic><topic>Set theory</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Abdullah, Saleem</creatorcontrib><creatorcontrib>Norrulashikin, Siti Mariam</creatorcontrib><creatorcontrib>Alqasem, Ohud A.</creatorcontrib><creatorcontrib>Elwahab, Maysaa E. A.</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Social Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Muhammad</au><au>Aamir, Muhammad</au><au>Abdullah, Saleem</au><au>Norrulashikin, Siti Mariam</au><au>Alqasem, Ohud A.</au><au>Elwahab, Maysaa E. A.</au><au>Khan, Ilyas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework</atitle><jtitle>Journal of big data</jtitle><stitle>J Big Data</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>143</spage><epage>16</epage><pages>143-16</pages><artnum>143</artnum><issn>2196-1115</issn><eissn>2196-1115</eissn><abstract>The interplay of exchange rates among nations significantly influences both international and domestic trade, underscoring the pivotal role of the foreign exchange market (Forex) in a country's economic landscape. Forex fluctuations have a significant impact on the everyday lives of both government agencies and the public population, directly influencing a country's prosperity or misfortune. This work proposes an advanced fuzzy time series model that incorporates domain universe sub-partitioning, parameter adjustment optimization methodologies, and interval forecasting methods. We utilized this model to examine annual exchange rate patterns between the Pakistani rupee (PKR) and the US dollar (US$), comparing its forecast accuracy to that of other models. Our proposed methodology outperformed existing methodologies in terms of forecasting precision, providing stakeholders with valuable insights for making informed, data-driven business decisions that benefit both individual firms and the country overall.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40537-024-01003-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-1115
ispartof Journal of big data, 2024-10, Vol.11 (1), p.143-16, Article 143
issn 2196-1115
2196-1115
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fb88bbdb055c4ff8b6dae10d946a385a
source ABI/INFORM global; Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; Social Science Premium Collection (Proquest) (PQ_SDU_P3); Coronavirus Research Database
subjects American dollar
Astronomical models
Autoregressive integrated moving average
Average forecast error rate
Big Data
Central banks
Communications Engineering
Computational Science and Engineering
Computer Science
Currency
Data Mining and Knowledge Discovery
Database Management
Decision making
Economic development
Economic growth
Economic statistics
Forecasting
Forecasting techniques
Foreign exchange markets
Foreign exchange rates
Forex
Fuzzy sets
Fuzzy time series
Global economy
Information Storage and Retrieval
International trade
Mathematical Applications in Computer Science
Networks
Parameter modification
Set theory
Time series
Trends
title Metamorphosing forex: advancements in volatility forecasting using a modified fuzzy time series framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamorphosing%20forex:%20advancements%20in%20volatility%20forecasting%20using%20a%20modified%20fuzzy%20time%20series%20framework&rft.jtitle=Journal%20of%20big%20data&rft.au=Bilal,%20Muhammad&rft.date=2024-10-15&rft.volume=11&rft.issue=1&rft.spage=143&rft.epage=16&rft.pages=143-16&rft.artnum=143&rft.issn=2196-1115&rft.eissn=2196-1115&rft_id=info:doi/10.1186/s40537-024-01003-7&rft_dat=%3Cproquest_doaj_%3E3116758709%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-f1e2fb087ac43ac489771bd39f9e38eaf9b17fcfd142de0d0836f46e4d513d403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116758709&rft_id=info:pmid/&rfr_iscdi=true