Loading…

Seed Size, Seed Dispersal Traits, and Plant Dispersion Patterns for Native and Introduced Grassland Plants

Most terrestrial plants disperse by seeds, yet the relationship between seed mass, seed dispersal traits, and plant dispersion is poorly understood. We quantified seed traits for 48 species of native and introduced plants from the grasslands of western Montana, USA, to investigate the relationships...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2023-02, Vol.12 (5), p.1032
Main Authors: Tuthill, Jane E, Ortega, Yvette K, Pearson, Dean E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most terrestrial plants disperse by seeds, yet the relationship between seed mass, seed dispersal traits, and plant dispersion is poorly understood. We quantified seed traits for 48 species of native and introduced plants from the grasslands of western Montana, USA, to investigate the relationships between seed traits and plant dispersion patterns. Additionally, because the linkage between dispersal traits and dispersion patterns might be stronger for actively dispersing species, we compared these patterns between native and introduced plants. Finally, we evaluated the efficacy of trait databases versus locally collected data for examining these questions. We found that seed mass correlated positively with the presence of dispersal adaptations such as pappi and awns, but only for introduced plants, for which larger-seeded species were four times as likely to exhibit dispersal adaptations as smaller-seeded species. This finding suggests that introduced plants with larger seeds may require dispersal adaptations to overcome seed mass limitations and invasion barriers. Notably, larger-seeded exotics also tended to be more widely distributed than their smaller-seeded counterparts, again a pattern that was not apparent for native taxa. These results suggest that the effects of seed traits on plant distribution patterns for expanding populations may be obscured for long-established species by other ecological filters (e.g., competition). Finally, seed masses from databases differed from locally collected data for 77% of the study species. Yet, database seed masses correlated with local estimates and generated similar results. Nonetheless, average seed masses differed up to 500-fold between data sources, suggesting that local data provides more valid results for community-level questions.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants12051032