Loading…

Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture

Phosphates are known to be essential for plant growth and development, with phosphorus compounds being involved in various physiological and biochemical reactions. Phosphates are known as one of the most important factors limiting crop yields. The problem of phosphorus deficiency in the soil has tra...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2022-08, Vol.11 (16), p.2119
Main Authors: Timofeeva, Anna, Galyamova, Maria, Sedykh, Sergey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phosphates are known to be essential for plant growth and development, with phosphorus compounds being involved in various physiological and biochemical reactions. Phosphates are known as one of the most important factors limiting crop yields. The problem of phosphorus deficiency in the soil has traditionally been solved by applying phosphate fertilizers. However, chemical phosphate fertilizers are considered ineffective compared to the organic fertilizers manure and compost. Therefore, increasing the bioavailability of phosphates for plants is one of the primary goals of sustainable agriculture. Phosphate-solubilizing soil microorganisms can make soil-insoluble phosphate bioavailable for plants through solubilization and mineralization. These microorganisms are currently in the focus of interest due to their advantages, such as environmental friendliness, low cost, and high biological efficiency. In this regard, the solubilization of phosphates by soil microorganisms holds strong potential in research, and inoculation of soils or crops with phosphate-solubilizing bacteria is a promising strategy to improve plant phosphate uptake. In this review, we analyze all the species of phosphate-solubilizing bacteria described in the literature to date. We discuss key mechanisms of solubilization of mineral phosphates and mineralization of organic phosphate-containing compounds: organic acids secreted by bacteria for the mobilization of insoluble inorganic phosphates, and the enzymes hydrolyzing phosphorus-containing organic compounds. We demonstrate that phosphate-solubilizing microorganisms have enormous potency as biofertilizers since they increase phosphorus bioavailability for the plant, promote sustainable agriculture, improve soil fertility, and raise crop yields. The use of phosphate-solubilizing microbes is regarded as a new frontier in increasing plant productivity.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants11162119