Loading…
Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities
Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 differ...
Saved in:
Published in: | Journal of food quality 2020-09, Vol.2020 (2020), p.1-9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3 |
container_end_page | 9 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of food quality |
container_volume | 2020 |
creator | Wu, Si-Zhan Fu, Hai-Yan Yan, Si-Min Shi, Qiong Song, Juan Xu, Lu |
description | Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars. |
doi_str_mv | 10.1155/2020/9474158 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697091732</galeid><doaj_id>oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5</doaj_id><sourcerecordid>A697091732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEEkvhxhlF4ki3tRP_iY9LoLBSBRzgbE3s8a5X2Xixk8J-jH7jOt2KCgkJ-WB7_JtnvdEriteUXFDK-WVFKnKpmGSUN0-KBZWMLxnn8mmxIJSJpWJV87x4kdKOkJpzwhbFbdtDSt55A6MPQxlc-cE7hxGHsXzfT9hhjMeynfrR30BMZXcsVwP0x-TTDH_b5pOBvrwCM4aYzst2i_v7Cgy2_DKN0c_C-b4eNhGtz8KZmh9XQ3757S3kr1o4gMkkppfFMwd9wlcP-1nx4-rj9_bz8vrrp3W7ul4apupxCdaZrradstlaxQUHJcFWVnaCOIYSJHGEMyGRZuu1VcIpi0JYxBqFw_qsWJ90bYCdPkS_h3jUAby-L4S40RBHb3rUruvqquOu7hgw2ijVMeWkNXnceVSWZ623J61DDD8nTKPehSlm00lXjDWVEJSTR2oDWdQPLowRzN4no1dCSaKorKtMXfyDysvOcw0DOp_rfzWcnxpMDClFdH_MUKLnXOg5F_ohFxl_d8K3frDwy_-PfnOiMTPo4JGmTQ4Qqe8AJeTCiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448266150</pqid></control><display><type>article</type><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu</creator><contributor>Aguayo, Encarna</contributor><creatorcontrib>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu ; Aguayo, Encarna</creatorcontrib><description>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</description><identifier>ISSN: 0146-9428</identifier><identifier>EISSN: 1745-4557</identifier><identifier>DOI: 10.1155/2020/9474158</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Antioxidants ; Berries ; Blueberries ; Classification ; Cultivars ; Density ; Discriminant analysis ; Flavonoids ; Food quality ; Fruit ; Fruits ; Mathematical optimization ; Phenols ; Polyphenols ; Principal components analysis ; Sample size ; Vitamin C</subject><ispartof>Journal of food quality, 2020-09, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Juan Song et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Juan Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</citedby><cites>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</cites><orcidid>0000-0003-4742-5623 ; 0000-0002-8308-3213 ; 0000-0001-9343-5174 ; 0000-0002-0865-0652 ; 0000-0002-5711-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2448266150/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2448266150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Aguayo, Encarna</contributor><creatorcontrib>Wu, Si-Zhan</creatorcontrib><creatorcontrib>Fu, Hai-Yan</creatorcontrib><creatorcontrib>Yan, Si-Min</creatorcontrib><creatorcontrib>Shi, Qiong</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><title>Journal of food quality</title><description>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Antioxidants</subject><subject>Berries</subject><subject>Blueberries</subject><subject>Classification</subject><subject>Cultivars</subject><subject>Density</subject><subject>Discriminant analysis</subject><subject>Flavonoids</subject><subject>Food quality</subject><subject>Fruit</subject><subject>Fruits</subject><subject>Mathematical optimization</subject><subject>Phenols</subject><subject>Polyphenols</subject><subject>Principal components analysis</subject><subject>Sample size</subject><subject>Vitamin C</subject><issn>0146-9428</issn><issn>1745-4557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk9v1DAQxSMEEkvhxhlF4ki3tRP_iY9LoLBSBRzgbE3s8a5X2Xixk8J-jH7jOt2KCgkJ-WB7_JtnvdEriteUXFDK-WVFKnKpmGSUN0-KBZWMLxnn8mmxIJSJpWJV87x4kdKOkJpzwhbFbdtDSt55A6MPQxlc-cE7hxGHsXzfT9hhjMeynfrR30BMZXcsVwP0x-TTDH_b5pOBvrwCM4aYzst2i_v7Cgy2_DKN0c_C-b4eNhGtz8KZmh9XQ3757S3kr1o4gMkkppfFMwd9wlcP-1nx4-rj9_bz8vrrp3W7ul4apupxCdaZrradstlaxQUHJcFWVnaCOIYSJHGEMyGRZuu1VcIpi0JYxBqFw_qsWJ90bYCdPkS_h3jUAby-L4S40RBHb3rUruvqquOu7hgw2ijVMeWkNXnceVSWZ623J61DDD8nTKPehSlm00lXjDWVEJSTR2oDWdQPLowRzN4no1dCSaKorKtMXfyDysvOcw0DOp_rfzWcnxpMDClFdH_MUKLnXOg5F_ohFxl_d8K3frDwy_-PfnOiMTPo4JGmTQ4Qqe8AJeTCiw</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Wu, Si-Zhan</creator><creator>Fu, Hai-Yan</creator><creator>Yan, Si-Min</creator><creator>Shi, Qiong</creator><creator>Song, Juan</creator><creator>Xu, Lu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8C1</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4742-5623</orcidid><orcidid>https://orcid.org/0000-0002-8308-3213</orcidid><orcidid>https://orcid.org/0000-0001-9343-5174</orcidid><orcidid>https://orcid.org/0000-0002-0865-0652</orcidid><orcidid>https://orcid.org/0000-0002-5711-9921</orcidid></search><sort><creationdate>20200926</creationdate><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><author>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Antioxidants</topic><topic>Berries</topic><topic>Blueberries</topic><topic>Classification</topic><topic>Cultivars</topic><topic>Density</topic><topic>Discriminant analysis</topic><topic>Flavonoids</topic><topic>Food quality</topic><topic>Fruit</topic><topic>Fruits</topic><topic>Mathematical optimization</topic><topic>Phenols</topic><topic>Polyphenols</topic><topic>Principal components analysis</topic><topic>Sample size</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Si-Zhan</creatorcontrib><creatorcontrib>Fu, Hai-Yan</creatorcontrib><creatorcontrib>Yan, Si-Min</creatorcontrib><creatorcontrib>Shi, Qiong</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of food quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Si-Zhan</au><au>Fu, Hai-Yan</au><au>Yan, Si-Min</au><au>Shi, Qiong</au><au>Song, Juan</au><au>Xu, Lu</au><au>Aguayo, Encarna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</atitle><jtitle>Journal of food quality</jtitle><date>2020-09-26</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0146-9428</issn><eissn>1745-4557</eissn><abstract>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/9474158</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4742-5623</orcidid><orcidid>https://orcid.org/0000-0002-8308-3213</orcidid><orcidid>https://orcid.org/0000-0001-9343-5174</orcidid><orcidid>https://orcid.org/0000-0002-0865-0652</orcidid><orcidid>https://orcid.org/0000-0002-5711-9921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9428 |
ispartof | Journal of food quality, 2020-09, Vol.2020 (2020), p.1-9 |
issn | 0146-9428 1745-4557 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5 |
source | EBSCOhost Business Source Ultimate; Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Algorithms Analysis Antioxidants Berries Blueberries Classification Cultivars Density Discriminant analysis Flavonoids Food quality Fruit Fruits Mathematical optimization Phenols Polyphenols Principal components analysis Sample size Vitamin C |
title | Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Different%20Blueberry%20Cultivars%20by%20Analysis%20of%20Physical%20Factors,%20Chemical%20and%20Nutritional%20Ingredients,%20and%20Antioxidant%20Capacities&rft.jtitle=Journal%20of%20food%20quality&rft.au=Wu,%20Si-Zhan&rft.date=2020-09-26&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0146-9428&rft.eissn=1745-4557&rft_id=info:doi/10.1155/2020/9474158&rft_dat=%3Cgale_doaj_%3EA697091732%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448266150&rft_id=info:pmid/&rft_galeid=A697091732&rfr_iscdi=true |