Loading…

Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities

Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 differ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food quality 2020-09, Vol.2020 (2020), p.1-9
Main Authors: Wu, Si-Zhan, Fu, Hai-Yan, Yan, Si-Min, Shi, Qiong, Song, Juan, Xu, Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3
cites cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3
container_end_page 9
container_issue 2020
container_start_page 1
container_title Journal of food quality
container_volume 2020
creator Wu, Si-Zhan
Fu, Hai-Yan
Yan, Si-Min
Shi, Qiong
Song, Juan
Xu, Lu
description Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.
doi_str_mv 10.1155/2020/9474158
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697091732</galeid><doaj_id>oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5</doaj_id><sourcerecordid>A697091732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxSMEEkvhxhlF4ki3tRP_iY9LoLBSBRzgbE3s8a5X2Xixk8J-jH7jOt2KCgkJ-WB7_JtnvdEriteUXFDK-WVFKnKpmGSUN0-KBZWMLxnn8mmxIJSJpWJV87x4kdKOkJpzwhbFbdtDSt55A6MPQxlc-cE7hxGHsXzfT9hhjMeynfrR30BMZXcsVwP0x-TTDH_b5pOBvrwCM4aYzst2i_v7Cgy2_DKN0c_C-b4eNhGtz8KZmh9XQ3757S3kr1o4gMkkppfFMwd9wlcP-1nx4-rj9_bz8vrrp3W7ul4apupxCdaZrradstlaxQUHJcFWVnaCOIYSJHGEMyGRZuu1VcIpi0JYxBqFw_qsWJ90bYCdPkS_h3jUAby-L4S40RBHb3rUruvqquOu7hgw2ijVMeWkNXnceVSWZ623J61DDD8nTKPehSlm00lXjDWVEJSTR2oDWdQPLowRzN4no1dCSaKorKtMXfyDysvOcw0DOp_rfzWcnxpMDClFdH_MUKLnXOg5F_ohFxl_d8K3frDwy_-PfnOiMTPo4JGmTQ4Qqe8AJeTCiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448266150</pqid></control><display><type>article</type><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu</creator><contributor>Aguayo, Encarna</contributor><creatorcontrib>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu ; Aguayo, Encarna</creatorcontrib><description>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</description><identifier>ISSN: 0146-9428</identifier><identifier>EISSN: 1745-4557</identifier><identifier>DOI: 10.1155/2020/9474158</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analysis ; Antioxidants ; Berries ; Blueberries ; Classification ; Cultivars ; Density ; Discriminant analysis ; Flavonoids ; Food quality ; Fruit ; Fruits ; Mathematical optimization ; Phenols ; Polyphenols ; Principal components analysis ; Sample size ; Vitamin C</subject><ispartof>Journal of food quality, 2020-09, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Juan Song et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Juan Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</citedby><cites>FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</cites><orcidid>0000-0003-4742-5623 ; 0000-0002-8308-3213 ; 0000-0001-9343-5174 ; 0000-0002-0865-0652 ; 0000-0002-5711-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2448266150/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2448266150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Aguayo, Encarna</contributor><creatorcontrib>Wu, Si-Zhan</creatorcontrib><creatorcontrib>Fu, Hai-Yan</creatorcontrib><creatorcontrib>Yan, Si-Min</creatorcontrib><creatorcontrib>Shi, Qiong</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><title>Journal of food quality</title><description>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Antioxidants</subject><subject>Berries</subject><subject>Blueberries</subject><subject>Classification</subject><subject>Cultivars</subject><subject>Density</subject><subject>Discriminant analysis</subject><subject>Flavonoids</subject><subject>Food quality</subject><subject>Fruit</subject><subject>Fruits</subject><subject>Mathematical optimization</subject><subject>Phenols</subject><subject>Polyphenols</subject><subject>Principal components analysis</subject><subject>Sample size</subject><subject>Vitamin C</subject><issn>0146-9428</issn><issn>1745-4557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk9v1DAQxSMEEkvhxhlF4ki3tRP_iY9LoLBSBRzgbE3s8a5X2Xixk8J-jH7jOt2KCgkJ-WB7_JtnvdEriteUXFDK-WVFKnKpmGSUN0-KBZWMLxnn8mmxIJSJpWJV87x4kdKOkJpzwhbFbdtDSt55A6MPQxlc-cE7hxGHsXzfT9hhjMeynfrR30BMZXcsVwP0x-TTDH_b5pOBvrwCM4aYzst2i_v7Cgy2_DKN0c_C-b4eNhGtz8KZmh9XQ3757S3kr1o4gMkkppfFMwd9wlcP-1nx4-rj9_bz8vrrp3W7ul4apupxCdaZrradstlaxQUHJcFWVnaCOIYSJHGEMyGRZuu1VcIpi0JYxBqFw_qsWJ90bYCdPkS_h3jUAby-L4S40RBHb3rUruvqquOu7hgw2ijVMeWkNXnceVSWZ623J61DDD8nTKPehSlm00lXjDWVEJSTR2oDWdQPLowRzN4no1dCSaKorKtMXfyDysvOcw0DOp_rfzWcnxpMDClFdH_MUKLnXOg5F_ohFxl_d8K3frDwy_-PfnOiMTPo4JGmTQ4Qqe8AJeTCiw</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Wu, Si-Zhan</creator><creator>Fu, Hai-Yan</creator><creator>Yan, Si-Min</creator><creator>Shi, Qiong</creator><creator>Song, Juan</creator><creator>Xu, Lu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8C1</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4742-5623</orcidid><orcidid>https://orcid.org/0000-0002-8308-3213</orcidid><orcidid>https://orcid.org/0000-0001-9343-5174</orcidid><orcidid>https://orcid.org/0000-0002-0865-0652</orcidid><orcidid>https://orcid.org/0000-0002-5711-9921</orcidid></search><sort><creationdate>20200926</creationdate><title>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</title><author>Wu, Si-Zhan ; Fu, Hai-Yan ; Yan, Si-Min ; Shi, Qiong ; Song, Juan ; Xu, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Antioxidants</topic><topic>Berries</topic><topic>Blueberries</topic><topic>Classification</topic><topic>Cultivars</topic><topic>Density</topic><topic>Discriminant analysis</topic><topic>Flavonoids</topic><topic>Food quality</topic><topic>Fruit</topic><topic>Fruits</topic><topic>Mathematical optimization</topic><topic>Phenols</topic><topic>Polyphenols</topic><topic>Principal components analysis</topic><topic>Sample size</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Si-Zhan</creatorcontrib><creatorcontrib>Fu, Hai-Yan</creatorcontrib><creatorcontrib>Yan, Si-Min</creatorcontrib><creatorcontrib>Shi, Qiong</creatorcontrib><creatorcontrib>Song, Juan</creatorcontrib><creatorcontrib>Xu, Lu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of food quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Si-Zhan</au><au>Fu, Hai-Yan</au><au>Yan, Si-Min</au><au>Shi, Qiong</au><au>Song, Juan</au><au>Xu, Lu</au><au>Aguayo, Encarna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities</atitle><jtitle>Journal of food quality</jtitle><date>2020-09-26</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0146-9428</issn><eissn>1745-4557</eissn><abstract>Blueberry fruits of different cultivars are featured with different quality indices. In this work, three types of quality factors, including 6 physical parameters, 12 chemical and nutritional components, and 3 antioxidant indices, were measured to compare and classify blueberry fruits from 12 different cultivars in China. Using the autoscaled data of quality factors, unsupervised principal component analysis was performed for exploratory analysis of intercultivar differences and the influences of quality factors. A supervised classification method, partial least squares discriminant analysis (PLSDA), was combined with the global particle swarm optimization algorithm (PSO) and two multiclass strategies, one-versus-rest (OVR) and one-versus-one (OVO), to select discriminative quality factors and develop classification models of the 12 cultivars. As a result, OVO-PLSDA with 8 quality factors could achieve the classification accuracy of 0.915. This study will provide new insights into the quality variations and key factors among different blueberry cultivars.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/9474158</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4742-5623</orcidid><orcidid>https://orcid.org/0000-0002-8308-3213</orcidid><orcidid>https://orcid.org/0000-0001-9343-5174</orcidid><orcidid>https://orcid.org/0000-0002-0865-0652</orcidid><orcidid>https://orcid.org/0000-0002-5711-9921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-9428
ispartof Journal of food quality, 2020-09, Vol.2020 (2020), p.1-9
issn 0146-9428
1745-4557
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fbb32b5f3b4a41899b49f7dc020ffed5
source EBSCOhost Business Source Ultimate; Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Algorithms
Analysis
Antioxidants
Berries
Blueberries
Classification
Cultivars
Density
Discriminant analysis
Flavonoids
Food quality
Fruit
Fruits
Mathematical optimization
Phenols
Polyphenols
Principal components analysis
Sample size
Vitamin C
title Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and Nutritional Ingredients, and Antioxidant Capacities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Different%20Blueberry%20Cultivars%20by%20Analysis%20of%20Physical%20Factors,%20Chemical%20and%20Nutritional%20Ingredients,%20and%20Antioxidant%20Capacities&rft.jtitle=Journal%20of%20food%20quality&rft.au=Wu,%20Si-Zhan&rft.date=2020-09-26&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0146-9428&rft.eissn=1745-4557&rft_id=info:doi/10.1155/2020/9474158&rft_dat=%3Cgale_doaj_%3EA697091732%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-adfcb3db9d0142565a97ad2d7b60f4e7a70f05467e11463d96f9de66dee3e6fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448266150&rft_id=info:pmid/&rft_galeid=A697091732&rfr_iscdi=true