Loading…

Energy Flux Method for Wave Energy Converters

Hydrodynamic tools reveal information as to the behaviour of a device in the presence of waves but provide little information on how to improve or optimise the device. With no recent work on the transfer of power (energy flux) from a wave field through the body surface of a wave energy converter (WE...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-10, Vol.17 (19), p.4991
Main Authors: Scarlett, Gabriel Thomas, McNatt, James Cameron, Henry, Alan, Arredondo-Galeana, Abel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrodynamic tools reveal information as to the behaviour of a device in the presence of waves but provide little information on how to improve or optimise the device. With no recent work on the transfer of power (energy flux) from a wave field through the body surface of a wave energy converter (WEC), we introduce the energy flux method to map the flow of power. The method is used to develop an open-source tool to visualise the energy flux density on a WEC body surface. This energy flux surface can also be used to compute the total power capture by integrating over the surface. We apply the tool to three WEC classes: a heaving cylinder, a twin-hulled hinged barge, and pitching surge devices. Using the flux surfaces, we investigate power efficiency in terms of power absorbed to power radiated. We visualise the hydrodynamic consequence of sub-optimal damping. Then, for two pitching surge devices with similar resonant peaks, we reveal why one device has a reduced power performance in a wave spectrum compared to the other. The results show the effectiveness of the energy flux method to predict power capture compared to motion-based methods and highlight the importance of assessing the flux of energy in WECs subjected to different damping strategies. Importantly, the tool can be adopted for a wide range of applications, from geometry optimisation and hydrodynamic efficiency assessment to structural design.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17194991