Loading…

AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA

The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2013-09, Vol.XL-1/W3, p.257-261
Main Authors: Mahdian, M., Homayouni, S., Fazel, M. A., Mohammadimanesh, F.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-181190a565fc5a1250213f9a07c19378c3a179719fd9cd13dbae131ce5b350143
cites
container_end_page 261
container_issue
container_start_page 257
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XL-1/W3
creator Mahdian, M.
Homayouni, S.
Fazel, M. A.
Mohammadimanesh, F.
description The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.
doi_str_mv 10.5194/isprsarchives-XL-1-W3-257-2013
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fbe65bc81dae4f1a987f598fc3c3c4ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fbe65bc81dae4f1a987f598fc3c3c4ee</doaj_id><sourcerecordid>oai_doaj_org_article_fbe65bc81dae4f1a987f598fc3c3c4ee</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-181190a565fc5a1250213f9a07c19378c3a179719fd9cd13dbae131ce5b350143</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhosoOOb-Q668i-Y0TdvcCLH7sBBXWTs2QQhpmmjHZKMdgv_ezIko5-K8vBweOE8QXAO5YcCj27bfd73uzFv7YXu8lhjwiuKQJTgkQM-CQeivMCc0Ov-TL4NR328IIRDFMSNsELyI2SLPlrJaLoREUszHKJOiLPNpnokqL-boXpSTMfKhrHxRVr6XSMyFfC7zEhVTNF1KiZ4KKRb546TyNFSKBRqLSlwFF05vezv62cNgOZ1U2QOWxeyIwYaG9IAhBeBEs5g5wzSEjIRAHdckMcBpkhqqIeEJcNdw0wBtam2BgrGspsy_QodBfuI2O71R-659192n2ulWfRe77lXp7tCarVWutjGrTQqNtpEDzdPEMZ46Q_1E1nrW3Yllul3fd9b98oCoo3r1T71aSwVqRZVXr47q6ReAQXVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA</title><source>EZB Electronic Journals Library</source><creator>Mahdian, M. ; Homayouni, S. ; Fazel, M. A. ; Mohammadimanesh, F.</creator><creatorcontrib>Mahdian, M. ; Homayouni, S. ; Fazel, M. A. ; Mohammadimanesh, F.</creatorcontrib><description>The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprsarchives-XL-1-W3-257-2013</identifier><language>eng</language><publisher>Copernicus Publications</publisher><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2013-09, Vol.XL-1/W3, p.257-261</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-181190a565fc5a1250213f9a07c19378c3a179719fd9cd13dbae131ce5b350143</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Homayouni, S.</creatorcontrib><creatorcontrib>Fazel, M. A.</creatorcontrib><creatorcontrib>Mohammadimanesh, F.</creatorcontrib><title>AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.</description><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkF1LwzAUhosoOOb-Q668i-Y0TdvcCLH7sBBXWTs2QQhpmmjHZKMdgv_ezIko5-K8vBweOE8QXAO5YcCj27bfd73uzFv7YXu8lhjwiuKQJTgkQM-CQeivMCc0Ov-TL4NR328IIRDFMSNsELyI2SLPlrJaLoREUszHKJOiLPNpnokqL-boXpSTMfKhrHxRVr6XSMyFfC7zEhVTNF1KiZ4KKRb546TyNFSKBRqLSlwFF05vezv62cNgOZ1U2QOWxeyIwYaG9IAhBeBEs5g5wzSEjIRAHdckMcBpkhqqIeEJcNdw0wBtam2BgrGspsy_QodBfuI2O71R-659192n2ulWfRe77lXp7tCarVWutjGrTQqNtpEDzdPEMZ46Q_1E1nrW3Yllul3fd9b98oCoo3r1T71aSwVqRZVXr47q6ReAQXVQ</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Mahdian, M.</creator><creator>Homayouni, S.</creator><creator>Fazel, M. A.</creator><creator>Mohammadimanesh, F.</creator><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20130924</creationdate><title>AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA</title><author>Mahdian, M. ; Homayouni, S. ; Fazel, M. A. ; Mohammadimanesh, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-181190a565fc5a1250213f9a07c19378c3a179719fd9cd13dbae131ce5b350143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Homayouni, S.</creatorcontrib><creatorcontrib>Fazel, M. A.</creatorcontrib><creatorcontrib>Mohammadimanesh, F.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdian, M.</au><au>Homayouni, S.</au><au>Fazel, M. A.</au><au>Mohammadimanesh, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2013-09-24</date><risdate>2013</risdate><volume>XL-1/W3</volume><spage>257</spage><epage>261</epage><pages>257-261</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.</abstract><pub>Copernicus Publications</pub><doi>10.5194/isprsarchives-XL-1-W3-257-2013</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2013-09, Vol.XL-1/W3, p.257-261
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fbe65bc81dae4f1a987f598fc3c3c4ee
source EZB Electronic Journals Library
title AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AGRICULTURAL%20LAND%20CLASSIFICATION%20BASED%20ON%20STATISTICAL%20ANALYSIS%20OF%20FULL%20POLARIMETRIC%20SAR%20DATA&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Mahdian,%20M.&rft.date=2013-09-24&rft.volume=XL-1/W3&rft.spage=257&rft.epage=261&rft.pages=257-261&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprsarchives-XL-1-W3-257-2013&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fbe65bc81dae4f1a987f598fc3c3c4ee%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-181190a565fc5a1250213f9a07c19378c3a179719fd9cd13dbae131ce5b350143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true