Loading…

An Optimal Genetic Algorithm for Fatigue Life Control of Medium Carbon Steel in Laser Hardening Process

This study proposes a genetic algorithm-optimized model for the control of the fatigue life of AISI 1040 steel components after a high-power diode laser hardening process. First, the effect of the process parameters, i.e., laser power and scan speed, on the fatigue life of the components after the l...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-02, Vol.10 (4), p.1401
Main Authors: Ponticelli, Gennaro Salvatore, Guarino, Stefano, Giannini, Oliviero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a genetic algorithm-optimized model for the control of the fatigue life of AISI 1040 steel components after a high-power diode laser hardening process. First, the effect of the process parameters, i.e., laser power and scan speed, on the fatigue life of the components after the laser treatment was evaluated by using a rotating bending machine. Then, in light of the experimental findings, the optimization model was developed and tested in order to find the best regression model able to fit the experimental data in terms of the number of cycles until failure. The laser treatment was found to significantly increase the fatigue life of the irradiated samples, thus revealing its suitability for industrial applications. Finally, the application of the proposed genetic algorithm-based method led to the definition of an optimal regression model which was able to replicate the experimental trend very accurately, with a mean error of about 6%, which is comparable to the standard deviation associated with the process variability.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10041401