Loading…
Molecular signatures of neural connectivity in the olfactory cortex
The ability to target subclasses of neurons with defined connectivity is crucial for uncovering neural circuit functions. The olfactory (piriform) cortex is thought to generate odour percepts and memories, and odour information encoded in piriform is routed to target brain areas involved in multimod...
Saved in:
Published in: | Nature communications 2016-07, Vol.7 (1), p.12238-12238, Article 12238 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability to target subclasses of neurons with defined connectivity is crucial for uncovering neural circuit functions. The olfactory (piriform) cortex is thought to generate odour percepts and memories, and odour information encoded in piriform is routed to target brain areas involved in multimodal sensory integration, cognition and motor control. However, it remains unknown if piriform outputs are spatially organized, and if distinct output channels are delineated by different gene expression patterns. Here we identify genes selectively expressed in different layers of the piriform cortex. Neural tracing experiments reveal that these layer-specific piriform genes mark different subclasses of neurons, which project to distinct target areas. Interestingly, these molecular signatures of connectivity are maintained in
reeler
mutant mice, in which neural positioning is scrambled. These results reveal that a predictive link between a neuron’s molecular identity and connectivity in this cortical circuit is determined independent of its spatial position.
The piriform cortex projects to multiple brain regions involved in diverse aspects of olfactory behavior but information about the organization of these outputs is lacking. Here the authors show that piriform neurons exhibit layer specific gene expression patterns that also define distinct projection targets. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms12238 |