Loading…
On the antimagicness of generalized edge corona graphs
Given a graph G, a function of assigning distinct labels {1,2,...,|E(G)|} to E(G) such that w(a)≠w(b), ∀ a,b∈V(G) is an antimagic labeling of G where w(a) indicates the vertex sum obtained by summing up all the labels assigned to the edges incident on the vertex a. Let G, Hi, 1≤i≤m be connected grap...
Saved in:
Published in: | Heliyon 2024-01, Vol.10 (2), p.e24002-e24002, Article e24002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-6de11f0d8b5a9b3156a725901b89f4b286586f30cd36cecb31c0e39823030fca3 |
container_end_page | e24002 |
container_issue | 2 |
container_start_page | e24002 |
container_title | Heliyon |
container_volume | 10 |
creator | D, Nivedha S, Devi Yamini |
description | Given a graph G, a function of assigning distinct labels {1,2,...,|E(G)|} to E(G) such that w(a)≠w(b), ∀ a,b∈V(G) is an antimagic labeling of G where w(a) indicates the vertex sum obtained by summing up all the labels assigned to the edges incident on the vertex a. Let G, Hi, 1≤i≤m be connected graphs such that E(G)={e1,e2,...,em}. A new graph is constructed from G, Hi, 1≤i≤m by adding all possible edges between the end vertices of ei and V(Hi), i∈{1,2,...,m}. The resulting graph is called the generalized edge corona of G and (H1,H2,...,Hm) which is denoted as G⋄(H1,H2,...,Hm). We prove G ⋄ (H1,H2,...,Hm) is antimagic under certain conditions using an algorithmic approach where G has only one vertex of maximum degree three (excluding spider graphs containing uneven legs) and |V(Hi)|≥2, i∈{1,2,...,m}. |
doi_str_mv | 10.1016/j.heliyon.2024.e24002 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fbf964a9ecde4433a39f28fa60ac23d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024000331</els_id><doaj_id>oai_doaj_org_article_fbf964a9ecde4433a39f28fa60ac23d3</doaj_id><sourcerecordid>2920576391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-6de11f0d8b5a9b3156a725901b89f4b286586f30cd36cecb31c0e39823030fca3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EolXpTwDtkUvS8cc69gmhio9KlXqBs-W1xxtHGzvYm0rl1-OQ0I8Tp7E8M8-8My8h7yksKVB5tVmucYoPOS0ZMLFEJgDYK3LeYr9QQsDrZ-8zclnrBgBor6Re8bfkjCumOVf8nMi71M1r7Gya49aO0SWstcuhGzFhsVP8jb5DP2LncsnJdmOxu3V9R94EO1W8PMUL8vPrlx_X3xe3d99urj_fLpxQbF5Ij5QG8GrorR447aVdsV4DHZQOYmBKNkmBg_NcOnStwgFyrRgHDsFZfkFujlyf7cbsStNYHky20fz9yGU0tszRTWjCELQUVqPzKATnluvAVLASrGPc88b6dGTt9sMWvcM0twVfQF9mUlybMd8bCopJuToQPp4IJf_aY53NNlaH02QT5n01TDPoV5Jr2kr7Y6krudaC4XEOBXPw0GzMyUNz8NAcPWx9H56LfOz659jTFtjOfh-xmOoiJoc-FnRzu0v8z4g_rmWwRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920576391</pqid></control><display><type>article</type><title>On the antimagicness of generalized edge corona graphs</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>D, Nivedha ; S, Devi Yamini</creator><creatorcontrib>D, Nivedha ; S, Devi Yamini</creatorcontrib><description>Given a graph G, a function of assigning distinct labels {1,2,...,|E(G)|} to E(G) such that w(a)≠w(b), ∀ a,b∈V(G) is an antimagic labeling of G where w(a) indicates the vertex sum obtained by summing up all the labels assigned to the edges incident on the vertex a. Let G, Hi, 1≤i≤m be connected graphs such that E(G)={e1,e2,...,em}. A new graph is constructed from G, Hi, 1≤i≤m by adding all possible edges between the end vertices of ei and V(Hi), i∈{1,2,...,m}. The resulting graph is called the generalized edge corona of G and (H1,H2,...,Hm) which is denoted as G⋄(H1,H2,...,Hm). We prove G ⋄ (H1,H2,...,Hm) is antimagic under certain conditions using an algorithmic approach where G has only one vertex of maximum degree three (excluding spider graphs containing uneven legs) and |V(Hi)|≥2, i∈{1,2,...,m}.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e24002</identifier><identifier>PMID: 38293383</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antimagic labeling ; Generalized edge corona graphs ; Graph labeling ; Pan graphs ; Spider graphs</subject><ispartof>Heliyon, 2024-01, Vol.10 (2), p.e24002-e24002, Article e24002</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c482t-6de11f0d8b5a9b3156a725901b89f4b286586f30cd36cecb31c0e39823030fca3</cites><orcidid>0000-0002-7866-7230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024000331$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38293383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D, Nivedha</creatorcontrib><creatorcontrib>S, Devi Yamini</creatorcontrib><title>On the antimagicness of generalized edge corona graphs</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Given a graph G, a function of assigning distinct labels {1,2,...,|E(G)|} to E(G) such that w(a)≠w(b), ∀ a,b∈V(G) is an antimagic labeling of G where w(a) indicates the vertex sum obtained by summing up all the labels assigned to the edges incident on the vertex a. Let G, Hi, 1≤i≤m be connected graphs such that E(G)={e1,e2,...,em}. A new graph is constructed from G, Hi, 1≤i≤m by adding all possible edges between the end vertices of ei and V(Hi), i∈{1,2,...,m}. The resulting graph is called the generalized edge corona of G and (H1,H2,...,Hm) which is denoted as G⋄(H1,H2,...,Hm). We prove G ⋄ (H1,H2,...,Hm) is antimagic under certain conditions using an algorithmic approach where G has only one vertex of maximum degree three (excluding spider graphs containing uneven legs) and |V(Hi)|≥2, i∈{1,2,...,m}.</description><subject>Antimagic labeling</subject><subject>Generalized edge corona graphs</subject><subject>Graph labeling</subject><subject>Pan graphs</subject><subject>Spider graphs</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkU1vEzEQhi0EolXpTwDtkUvS8cc69gmhio9KlXqBs-W1xxtHGzvYm0rl1-OQ0I8Tp7E8M8-8My8h7yksKVB5tVmucYoPOS0ZMLFEJgDYK3LeYr9QQsDrZ-8zclnrBgBor6Re8bfkjCumOVf8nMi71M1r7Gya49aO0SWstcuhGzFhsVP8jb5DP2LncsnJdmOxu3V9R94EO1W8PMUL8vPrlx_X3xe3d99urj_fLpxQbF5Ij5QG8GrorR447aVdsV4DHZQOYmBKNkmBg_NcOnStwgFyrRgHDsFZfkFujlyf7cbsStNYHky20fz9yGU0tszRTWjCELQUVqPzKATnluvAVLASrGPc88b6dGTt9sMWvcM0twVfQF9mUlybMd8bCopJuToQPp4IJf_aY53NNlaH02QT5n01TDPoV5Jr2kr7Y6krudaC4XEOBXPw0GzMyUNz8NAcPWx9H56LfOz659jTFtjOfh-xmOoiJoc-FnRzu0v8z4g_rmWwRw</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>D, Nivedha</creator><creator>S, Devi Yamini</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7866-7230</orcidid></search><sort><creationdate>20240130</creationdate><title>On the antimagicness of generalized edge corona graphs</title><author>D, Nivedha ; S, Devi Yamini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-6de11f0d8b5a9b3156a725901b89f4b286586f30cd36cecb31c0e39823030fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimagic labeling</topic><topic>Generalized edge corona graphs</topic><topic>Graph labeling</topic><topic>Pan graphs</topic><topic>Spider graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D, Nivedha</creatorcontrib><creatorcontrib>S, Devi Yamini</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D, Nivedha</au><au>S, Devi Yamini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the antimagicness of generalized edge corona graphs</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-01-30</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><spage>e24002</spage><epage>e24002</epage><pages>e24002-e24002</pages><artnum>e24002</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Given a graph G, a function of assigning distinct labels {1,2,...,|E(G)|} to E(G) such that w(a)≠w(b), ∀ a,b∈V(G) is an antimagic labeling of G where w(a) indicates the vertex sum obtained by summing up all the labels assigned to the edges incident on the vertex a. Let G, Hi, 1≤i≤m be connected graphs such that E(G)={e1,e2,...,em}. A new graph is constructed from G, Hi, 1≤i≤m by adding all possible edges between the end vertices of ei and V(Hi), i∈{1,2,...,m}. The resulting graph is called the generalized edge corona of G and (H1,H2,...,Hm) which is denoted as G⋄(H1,H2,...,Hm). We prove G ⋄ (H1,H2,...,Hm) is antimagic under certain conditions using an algorithmic approach where G has only one vertex of maximum degree three (excluding spider graphs containing uneven legs) and |V(Hi)|≥2, i∈{1,2,...,m}.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38293383</pmid><doi>10.1016/j.heliyon.2024.e24002</doi><orcidid>https://orcid.org/0000-0002-7866-7230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2024-01, Vol.10 (2), p.e24002-e24002, Article e24002 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fbf964a9ecde4433a39f28fa60ac23d3 |
source | ScienceDirect Journals; PubMed Central |
subjects | Antimagic labeling Generalized edge corona graphs Graph labeling Pan graphs Spider graphs |
title | On the antimagicness of generalized edge corona graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20antimagicness%20of%20generalized%20edge%20corona%20graphs&rft.jtitle=Heliyon&rft.au=D,%20Nivedha&rft.date=2024-01-30&rft.volume=10&rft.issue=2&rft.spage=e24002&rft.epage=e24002&rft.pages=e24002-e24002&rft.artnum=e24002&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e24002&rft_dat=%3Cproquest_doaj_%3E2920576391%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-6de11f0d8b5a9b3156a725901b89f4b286586f30cd36cecb31c0e39823030fca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920576391&rft_id=info:pmid/38293383&rfr_iscdi=true |