Loading…
Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells
Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change o...
Saved in:
Published in: | Nature communications 2019-06, Vol.10 (1), p.2705-12, Article 2705 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 2705 |
container_title | Nature communications |
container_volume | 10 |
creator | Chen, Xiaoyu Li, Rui Wong, Siu Hong Dexter Wei, Kongchang Cui, Miao Chen, Huaijun Jiang, Yuanzhang Yang, Boguang Zhao, Pengchao Xu, Jianbin Chen, Heng Yin, Chao Lin, Sien Lee, Wayne Yuk-Wai Jing, Yihan Li, Zhen Yang, Zhengmeng Xia, Jiang Chen, Guosong Li, Gang Bian, Liming |
description | Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area.
Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales. |
doi_str_mv | 10.1038/s41467-019-10640-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7</doaj_id><sourcerecordid>2244136689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2CBLLEO9Su2s0FCIx6VKrGBteVn6pFjBztBan89ZqYt0w3e2L73nO9aPl33FsEPCBJxVSmijPcQjT2CjML-_kV3jiFFPeKYvDw5n3WXte5hW2REgtLX3RlBGKORjedd3eXkc5nVGnJSEcwqhWWLhyvIHlSjouu3BSzFLao4C2pIUyuZWxUSWHK8m10JBiSV8uRiBY0G5i2u4WAFxU0nOONirG-6V17F6i4f9ovu55fPP3bf-pvvX693n256M1C49nrgBBvltTeDY5ZoxkdN7EA5Hj3lHCtvrcCacA35oKgd8YCQ15qMWnDDyEV3feTarPZyKWFW5U5mFeShkMskVVmDiU56g4TzTkAvDB0HLwjHfjCcCGM9t7yxPh5Zy6ZnZ41La1HxGfR5J4VbOeXfkg2CMS4a4P0DoORfm6ur3OettC-vEmNKEWFMjE2FjypTcq3F-acJCMq_uctj7rLlLg-5y_tmenf6tifLY8pNQI6C2lppcuXf7P9g_wAukL0W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244136689</pqid></control><display><type>article</type><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</creator><creatorcontrib>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</creatorcontrib><description>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area.
Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10640-z</identifier><identifier>PMID: 31221969</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/31 ; 13/89 ; 14/1 ; 14/19 ; 14/34 ; 14/63 ; 140/131 ; 147/137 ; 147/143 ; 147/3 ; 38/77 ; 639/301/357/537 ; 639/925/357/354 ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Cell Differentiation - genetics ; Cell Engineering - methods ; Cell Line ; Chains (polymeric) ; Conformation ; Drug carriers ; Drug Carriers - chemistry ; Drug delivery systems ; Energy dissipation ; Humanities and Social Sciences ; Humans ; Hydrogels ; Hydrogels - chemistry ; Interfaces ; Ligands ; Mesenchymal Stem Cells - physiology ; Molecular Conformation ; multidisciplinary ; Nanoparticles - chemistry ; Polymers - chemistry ; RNA, Small Interfering - administration & dosage ; RNA, Small Interfering - metabolism ; Science ; Science (multidisciplinary) ; siRNA ; Stem cells</subject><ispartof>Nature communications, 2019-06, Vol.10 (1), p.2705-12, Article 2705</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</citedby><cites>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</cites><orcidid>0000-0002-6555-2768 ; 0000-0003-4739-0918 ; 0000-0001-7089-911X ; 0000-0001-7920-4599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2244136689/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2244136689?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31221969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Wong, Siu Hong Dexter</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Chen, Huaijun</creatorcontrib><creatorcontrib>Jiang, Yuanzhang</creatorcontrib><creatorcontrib>Yang, Boguang</creatorcontrib><creatorcontrib>Zhao, Pengchao</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Heng</creatorcontrib><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Lin, Sien</creatorcontrib><creatorcontrib>Lee, Wayne Yuk-Wai</creatorcontrib><creatorcontrib>Jing, Yihan</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Zhengmeng</creatorcontrib><creatorcontrib>Xia, Jiang</creatorcontrib><creatorcontrib>Chen, Guosong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area.
Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</description><subject>13/100</subject><subject>13/31</subject><subject>13/89</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>14/63</subject><subject>140/131</subject><subject>147/137</subject><subject>147/143</subject><subject>147/3</subject><subject>38/77</subject><subject>639/301/357/537</subject><subject>639/925/357/354</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Engineering - methods</subject><subject>Cell Line</subject><subject>Chains (polymeric)</subject><subject>Conformation</subject><subject>Drug carriers</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery systems</subject><subject>Energy dissipation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Interfaces</subject><subject>Ligands</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Molecular Conformation</subject><subject>multidisciplinary</subject><subject>Nanoparticles - chemistry</subject><subject>Polymers - chemistry</subject><subject>RNA, Small Interfering - administration & dosage</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>siRNA</subject><subject>Stem cells</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2CBLLEO9Su2s0FCIx6VKrGBteVn6pFjBztBan89ZqYt0w3e2L73nO9aPl33FsEPCBJxVSmijPcQjT2CjML-_kV3jiFFPeKYvDw5n3WXte5hW2REgtLX3RlBGKORjedd3eXkc5nVGnJSEcwqhWWLhyvIHlSjouu3BSzFLao4C2pIUyuZWxUSWHK8m10JBiSV8uRiBY0G5i2u4WAFxU0nOONirG-6V17F6i4f9ovu55fPP3bf-pvvX693n256M1C49nrgBBvltTeDY5ZoxkdN7EA5Hj3lHCtvrcCacA35oKgd8YCQ15qMWnDDyEV3feTarPZyKWFW5U5mFeShkMskVVmDiU56g4TzTkAvDB0HLwjHfjCcCGM9t7yxPh5Zy6ZnZ41La1HxGfR5J4VbOeXfkg2CMS4a4P0DoORfm6ur3OettC-vEmNKEWFMjE2FjypTcq3F-acJCMq_uctj7rLlLg-5y_tmenf6tifLY8pNQI6C2lppcuXf7P9g_wAukL0W</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Chen, Xiaoyu</creator><creator>Li, Rui</creator><creator>Wong, Siu Hong Dexter</creator><creator>Wei, Kongchang</creator><creator>Cui, Miao</creator><creator>Chen, Huaijun</creator><creator>Jiang, Yuanzhang</creator><creator>Yang, Boguang</creator><creator>Zhao, Pengchao</creator><creator>Xu, Jianbin</creator><creator>Chen, Heng</creator><creator>Yin, Chao</creator><creator>Lin, Sien</creator><creator>Lee, Wayne Yuk-Wai</creator><creator>Jing, Yihan</creator><creator>Li, Zhen</creator><creator>Yang, Zhengmeng</creator><creator>Xia, Jiang</creator><creator>Chen, Guosong</creator><creator>Li, Gang</creator><creator>Bian, Liming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6555-2768</orcidid><orcidid>https://orcid.org/0000-0003-4739-0918</orcidid><orcidid>https://orcid.org/0000-0001-7089-911X</orcidid><orcidid>https://orcid.org/0000-0001-7920-4599</orcidid></search><sort><creationdate>20190620</creationdate><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><author>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/31</topic><topic>13/89</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>14/63</topic><topic>140/131</topic><topic>147/137</topic><topic>147/143</topic><topic>147/3</topic><topic>38/77</topic><topic>639/301/357/537</topic><topic>639/925/357/354</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Engineering - methods</topic><topic>Cell Line</topic><topic>Chains (polymeric)</topic><topic>Conformation</topic><topic>Drug carriers</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery systems</topic><topic>Energy dissipation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Interfaces</topic><topic>Ligands</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Molecular Conformation</topic><topic>multidisciplinary</topic><topic>Nanoparticles - chemistry</topic><topic>Polymers - chemistry</topic><topic>RNA, Small Interfering - administration & dosage</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>siRNA</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Wong, Siu Hong Dexter</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Chen, Huaijun</creatorcontrib><creatorcontrib>Jiang, Yuanzhang</creatorcontrib><creatorcontrib>Yang, Boguang</creatorcontrib><creatorcontrib>Zhao, Pengchao</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Heng</creatorcontrib><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Lin, Sien</creatorcontrib><creatorcontrib>Lee, Wayne Yuk-Wai</creatorcontrib><creatorcontrib>Jing, Yihan</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Zhengmeng</creatorcontrib><creatorcontrib>Xia, Jiang</creatorcontrib><creatorcontrib>Chen, Guosong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyu</au><au>Li, Rui</au><au>Wong, Siu Hong Dexter</au><au>Wei, Kongchang</au><au>Cui, Miao</au><au>Chen, Huaijun</au><au>Jiang, Yuanzhang</au><au>Yang, Boguang</au><au>Zhao, Pengchao</au><au>Xu, Jianbin</au><au>Chen, Heng</au><au>Yin, Chao</au><au>Lin, Sien</au><au>Lee, Wayne Yuk-Wai</au><au>Jing, Yihan</au><au>Li, Zhen</au><au>Yang, Zhengmeng</au><au>Xia, Jiang</au><au>Chen, Guosong</au><au>Li, Gang</au><au>Bian, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2705</spage><epage>12</epage><pages>2705-12</pages><artnum>2705</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area.
Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31221969</pmid><doi>10.1038/s41467-019-10640-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6555-2768</orcidid><orcidid>https://orcid.org/0000-0003-4739-0918</orcidid><orcidid>https://orcid.org/0000-0001-7089-911X</orcidid><orcidid>https://orcid.org/0000-0001-7920-4599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-06, Vol.10 (1), p.2705-12, Article 2705 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/100 13/31 13/89 14/1 14/19 14/34 14/63 140/131 147/137 147/143 147/3 38/77 639/301/357/537 639/925/357/354 Biocompatible Materials - chemistry Biomaterials Biomedical materials Cell Differentiation - genetics Cell Engineering - methods Cell Line Chains (polymeric) Conformation Drug carriers Drug Carriers - chemistry Drug delivery systems Energy dissipation Humanities and Social Sciences Humans Hydrogels Hydrogels - chemistry Interfaces Ligands Mesenchymal Stem Cells - physiology Molecular Conformation multidisciplinary Nanoparticles - chemistry Polymers - chemistry RNA, Small Interfering - administration & dosage RNA, Small Interfering - metabolism Science Science (multidisciplinary) siRNA Stem cells |
title | Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20manipulation%20of%20scale-up%20prepared%20single-chain%20polymeric%20nanogels%20for%20multiscale%20regulation%20of%20cells&rft.jtitle=Nature%20communications&rft.au=Chen,%20Xiaoyu&rft.date=2019-06-20&rft.volume=10&rft.issue=1&rft.spage=2705&rft.epage=12&rft.pages=2705-12&rft.artnum=2705&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10640-z&rft_dat=%3Cproquest_doaj_%3E2244136689%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244136689&rft_id=info:pmid/31221969&rfr_iscdi=true |