Loading…

Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells

Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change o...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-06, Vol.10 (1), p.2705-12, Article 2705
Main Authors: Chen, Xiaoyu, Li, Rui, Wong, Siu Hong Dexter, Wei, Kongchang, Cui, Miao, Chen, Huaijun, Jiang, Yuanzhang, Yang, Boguang, Zhao, Pengchao, Xu, Jianbin, Chen, Heng, Yin, Chao, Lin, Sien, Lee, Wayne Yuk-Wai, Jing, Yihan, Li, Zhen, Yang, Zhengmeng, Xia, Jiang, Chen, Guosong, Li, Gang, Bian, Liming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63
cites cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63
container_end_page 12
container_issue 1
container_start_page 2705
container_title Nature communications
container_volume 10
creator Chen, Xiaoyu
Li, Rui
Wong, Siu Hong Dexter
Wei, Kongchang
Cui, Miao
Chen, Huaijun
Jiang, Yuanzhang
Yang, Boguang
Zhao, Pengchao
Xu, Jianbin
Chen, Heng
Yin, Chao
Lin, Sien
Lee, Wayne Yuk-Wai
Jing, Yihan
Li, Zhen
Yang, Zhengmeng
Xia, Jiang
Chen, Guosong
Li, Gang
Bian, Liming
description Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area. Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.
doi_str_mv 10.1038/s41467-019-10640-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7</doaj_id><sourcerecordid>2244136689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2CBLLEO9Su2s0FCIx6VKrGBteVn6pFjBztBan89ZqYt0w3e2L73nO9aPl33FsEPCBJxVSmijPcQjT2CjML-_kV3jiFFPeKYvDw5n3WXte5hW2REgtLX3RlBGKORjedd3eXkc5nVGnJSEcwqhWWLhyvIHlSjouu3BSzFLao4C2pIUyuZWxUSWHK8m10JBiSV8uRiBY0G5i2u4WAFxU0nOONirG-6V17F6i4f9ovu55fPP3bf-pvvX693n256M1C49nrgBBvltTeDY5ZoxkdN7EA5Hj3lHCtvrcCacA35oKgd8YCQ15qMWnDDyEV3feTarPZyKWFW5U5mFeShkMskVVmDiU56g4TzTkAvDB0HLwjHfjCcCGM9t7yxPh5Zy6ZnZ41La1HxGfR5J4VbOeXfkg2CMS4a4P0DoORfm6ur3OettC-vEmNKEWFMjE2FjypTcq3F-acJCMq_uctj7rLlLg-5y_tmenf6tifLY8pNQI6C2lppcuXf7P9g_wAukL0W</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244136689</pqid></control><display><type>article</type><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</creator><creatorcontrib>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</creatorcontrib><description>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area. Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10640-z</identifier><identifier>PMID: 31221969</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/31 ; 13/89 ; 14/1 ; 14/19 ; 14/34 ; 14/63 ; 140/131 ; 147/137 ; 147/143 ; 147/3 ; 38/77 ; 639/301/357/537 ; 639/925/357/354 ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Cell Differentiation - genetics ; Cell Engineering - methods ; Cell Line ; Chains (polymeric) ; Conformation ; Drug carriers ; Drug Carriers - chemistry ; Drug delivery systems ; Energy dissipation ; Humanities and Social Sciences ; Humans ; Hydrogels ; Hydrogels - chemistry ; Interfaces ; Ligands ; Mesenchymal Stem Cells - physiology ; Molecular Conformation ; multidisciplinary ; Nanoparticles - chemistry ; Polymers - chemistry ; RNA, Small Interfering - administration &amp; dosage ; RNA, Small Interfering - metabolism ; Science ; Science (multidisciplinary) ; siRNA ; Stem cells</subject><ispartof>Nature communications, 2019-06, Vol.10 (1), p.2705-12, Article 2705</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</citedby><cites>FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</cites><orcidid>0000-0002-6555-2768 ; 0000-0003-4739-0918 ; 0000-0001-7089-911X ; 0000-0001-7920-4599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2244136689/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2244136689?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31221969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Wong, Siu Hong Dexter</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Chen, Huaijun</creatorcontrib><creatorcontrib>Jiang, Yuanzhang</creatorcontrib><creatorcontrib>Yang, Boguang</creatorcontrib><creatorcontrib>Zhao, Pengchao</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Heng</creatorcontrib><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Lin, Sien</creatorcontrib><creatorcontrib>Lee, Wayne Yuk-Wai</creatorcontrib><creatorcontrib>Jing, Yihan</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Zhengmeng</creatorcontrib><creatorcontrib>Xia, Jiang</creatorcontrib><creatorcontrib>Chen, Guosong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area. Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</description><subject>13/100</subject><subject>13/31</subject><subject>13/89</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>14/63</subject><subject>140/131</subject><subject>147/137</subject><subject>147/143</subject><subject>147/3</subject><subject>38/77</subject><subject>639/301/357/537</subject><subject>639/925/357/354</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Engineering - methods</subject><subject>Cell Line</subject><subject>Chains (polymeric)</subject><subject>Conformation</subject><subject>Drug carriers</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery systems</subject><subject>Energy dissipation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Interfaces</subject><subject>Ligands</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Molecular Conformation</subject><subject>multidisciplinary</subject><subject>Nanoparticles - chemistry</subject><subject>Polymers - chemistry</subject><subject>RNA, Small Interfering - administration &amp; dosage</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>siRNA</subject><subject>Stem cells</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2CBLLEO9Su2s0FCIx6VKrGBteVn6pFjBztBan89ZqYt0w3e2L73nO9aPl33FsEPCBJxVSmijPcQjT2CjML-_kV3jiFFPeKYvDw5n3WXte5hW2REgtLX3RlBGKORjedd3eXkc5nVGnJSEcwqhWWLhyvIHlSjouu3BSzFLao4C2pIUyuZWxUSWHK8m10JBiSV8uRiBY0G5i2u4WAFxU0nOONirG-6V17F6i4f9ovu55fPP3bf-pvvX693n256M1C49nrgBBvltTeDY5ZoxkdN7EA5Hj3lHCtvrcCacA35oKgd8YCQ15qMWnDDyEV3feTarPZyKWFW5U5mFeShkMskVVmDiU56g4TzTkAvDB0HLwjHfjCcCGM9t7yxPh5Zy6ZnZ41La1HxGfR5J4VbOeXfkg2CMS4a4P0DoORfm6ur3OettC-vEmNKEWFMjE2FjypTcq3F-acJCMq_uctj7rLlLg-5y_tmenf6tifLY8pNQI6C2lppcuXf7P9g_wAukL0W</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Chen, Xiaoyu</creator><creator>Li, Rui</creator><creator>Wong, Siu Hong Dexter</creator><creator>Wei, Kongchang</creator><creator>Cui, Miao</creator><creator>Chen, Huaijun</creator><creator>Jiang, Yuanzhang</creator><creator>Yang, Boguang</creator><creator>Zhao, Pengchao</creator><creator>Xu, Jianbin</creator><creator>Chen, Heng</creator><creator>Yin, Chao</creator><creator>Lin, Sien</creator><creator>Lee, Wayne Yuk-Wai</creator><creator>Jing, Yihan</creator><creator>Li, Zhen</creator><creator>Yang, Zhengmeng</creator><creator>Xia, Jiang</creator><creator>Chen, Guosong</creator><creator>Li, Gang</creator><creator>Bian, Liming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6555-2768</orcidid><orcidid>https://orcid.org/0000-0003-4739-0918</orcidid><orcidid>https://orcid.org/0000-0001-7089-911X</orcidid><orcidid>https://orcid.org/0000-0001-7920-4599</orcidid></search><sort><creationdate>20190620</creationdate><title>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</title><author>Chen, Xiaoyu ; Li, Rui ; Wong, Siu Hong Dexter ; Wei, Kongchang ; Cui, Miao ; Chen, Huaijun ; Jiang, Yuanzhang ; Yang, Boguang ; Zhao, Pengchao ; Xu, Jianbin ; Chen, Heng ; Yin, Chao ; Lin, Sien ; Lee, Wayne Yuk-Wai ; Jing, Yihan ; Li, Zhen ; Yang, Zhengmeng ; Xia, Jiang ; Chen, Guosong ; Li, Gang ; Bian, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/100</topic><topic>13/31</topic><topic>13/89</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>14/63</topic><topic>140/131</topic><topic>147/137</topic><topic>147/143</topic><topic>147/3</topic><topic>38/77</topic><topic>639/301/357/537</topic><topic>639/925/357/354</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Engineering - methods</topic><topic>Cell Line</topic><topic>Chains (polymeric)</topic><topic>Conformation</topic><topic>Drug carriers</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery systems</topic><topic>Energy dissipation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Interfaces</topic><topic>Ligands</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Molecular Conformation</topic><topic>multidisciplinary</topic><topic>Nanoparticles - chemistry</topic><topic>Polymers - chemistry</topic><topic>RNA, Small Interfering - administration &amp; dosage</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>siRNA</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Wong, Siu Hong Dexter</creatorcontrib><creatorcontrib>Wei, Kongchang</creatorcontrib><creatorcontrib>Cui, Miao</creatorcontrib><creatorcontrib>Chen, Huaijun</creatorcontrib><creatorcontrib>Jiang, Yuanzhang</creatorcontrib><creatorcontrib>Yang, Boguang</creatorcontrib><creatorcontrib>Zhao, Pengchao</creatorcontrib><creatorcontrib>Xu, Jianbin</creatorcontrib><creatorcontrib>Chen, Heng</creatorcontrib><creatorcontrib>Yin, Chao</creatorcontrib><creatorcontrib>Lin, Sien</creatorcontrib><creatorcontrib>Lee, Wayne Yuk-Wai</creatorcontrib><creatorcontrib>Jing, Yihan</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Zhengmeng</creatorcontrib><creatorcontrib>Xia, Jiang</creatorcontrib><creatorcontrib>Chen, Guosong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Bian, Liming</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyu</au><au>Li, Rui</au><au>Wong, Siu Hong Dexter</au><au>Wei, Kongchang</au><au>Cui, Miao</au><au>Chen, Huaijun</au><au>Jiang, Yuanzhang</au><au>Yang, Boguang</au><au>Zhao, Pengchao</au><au>Xu, Jianbin</au><au>Chen, Heng</au><au>Yin, Chao</au><au>Lin, Sien</au><au>Lee, Wayne Yuk-Wai</au><au>Jing, Yihan</au><au>Li, Zhen</au><au>Yang, Zhengmeng</au><au>Xia, Jiang</au><au>Chen, Guosong</au><au>Li, Gang</au><au>Bian, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2705</spage><epage>12</epage><pages>2705-12</pages><artnum>2705</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand–receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area. Cyclized or folded single-chain polymeric nano-objects are generally produced with low efficiency. Here, the authors have scaled up the preparation of supramolecular single-chain nanogels by RAFT polymerizations and applied the dynamic supramolecular single-chain nanogels to regulate cell behaviours at varying scales.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31221969</pmid><doi>10.1038/s41467-019-10640-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6555-2768</orcidid><orcidid>https://orcid.org/0000-0003-4739-0918</orcidid><orcidid>https://orcid.org/0000-0001-7089-911X</orcidid><orcidid>https://orcid.org/0000-0001-7920-4599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-06, Vol.10 (1), p.2705-12, Article 2705
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fc18efe80f8c495f8372f5c738cdf7d7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central(OpenAccess); Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/100
13/31
13/89
14/1
14/19
14/34
14/63
140/131
147/137
147/143
147/3
38/77
639/301/357/537
639/925/357/354
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Cell Differentiation - genetics
Cell Engineering - methods
Cell Line
Chains (polymeric)
Conformation
Drug carriers
Drug Carriers - chemistry
Drug delivery systems
Energy dissipation
Humanities and Social Sciences
Humans
Hydrogels
Hydrogels - chemistry
Interfaces
Ligands
Mesenchymal Stem Cells - physiology
Molecular Conformation
multidisciplinary
Nanoparticles - chemistry
Polymers - chemistry
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - metabolism
Science
Science (multidisciplinary)
siRNA
Stem cells
title Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20manipulation%20of%20scale-up%20prepared%20single-chain%20polymeric%20nanogels%20for%20multiscale%20regulation%20of%20cells&rft.jtitle=Nature%20communications&rft.au=Chen,%20Xiaoyu&rft.date=2019-06-20&rft.volume=10&rft.issue=1&rft.spage=2705&rft.epage=12&rft.pages=2705-12&rft.artnum=2705&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10640-z&rft_dat=%3Cproquest_doaj_%3E2244136689%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b5732cafbfc5e6d3b679b3d54729f4772afdd82b37b075a4d92511fbb39b87c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244136689&rft_id=info:pmid/31221969&rfr_iscdi=true