Loading…

Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst

Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricult...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (12), p.2725
Main Authors: Segundo, Rojas-Flores, De La Cruz-Noriega, Magaly, Luis, Cabanillas-Chirinos, Otiniano, Nélida Milly, Soto-Deza, Nancy, Rojas-Villacorta, Walter, De La Cruz-Cerquin, Mayra
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page 2725
container_title Molecules (Basel, Switzerland)
container_volume 29
creator Segundo, Rojas-Flores
De La Cruz-Noriega, Magaly
Luis, Cabanillas-Chirinos
Otiniano, Nélida Milly
Soto-Deza, Nancy
Rojas-Villacorta, Walter
De La Cruz-Cerquin, Mayra
description Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD shown was 376.20 ± 15.478 mW/cm , with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.
doi_str_mv 10.3390/molecules29122725
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799624791</galeid><doaj_id>oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e</doaj_id><sourcerecordid>A799624791</sourcerecordid><originalsourceid>FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943</originalsourceid><addsrcrecordid>eNpdks1u1DAQxyMEou3CA3BBlrhw2eKvOPEJtSsKK7UCofYcTZxx1isnLnZSsS_Ac9ftFrRFPtia-c9vvlwU7xg9FULTT0PwaGaPiWvGecXLF8Uxk5wuBZX65cH7qDhJaUspZ5KVr4sjUWtBK82Oiz8_sZvN5MJIgiXX4bcz5Aon8GQdxkRg7MiPGA4k5y5gzjpFZ9y0I9MmhrnfkCtnYmhdjruY0ZMVep_ITXJjT87BOO_nRAaILlkPd45ARj-gDORUuzS9KV5Z8AnfPt2L4ubiy_Xq2_Ly-9f16uxy2YlKTEteCVBo0ZSdYQo1BWEsg9Kgtkq1CrHtFJem1ZrzVmrF6hJkqSqhSiu1FItived2AbbNbXS5pl0TwDWPhhD7BuLkjMfGGmaEbIHVVspWla0FowXUmldlzSVm1uc963ZuB-wMjlME_wz63DO6TdOHu4YxTsuqppnw8YkQw68Z09QMLpk8OhgxzKnJO-I1rR62tSg-_CfdhjmOeVaPKsU01SKrTveqHnIHbrQhJzb5dDg4E0a0LtvPKq3zlPL-c8D7wx7-Ff_3g4h7rxTAqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072619093</pqid></control><display><type>article</type><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</creator><creatorcontrib>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</creatorcontrib><description>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD shown was 376.20 ± 15.478 mW/cm , with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29122725</identifier><identifier>PMID: 38930791</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>agricultural wastewater ; Arsenic ; Arsenic - metabolism ; Bacillus - metabolism ; Bacteria ; Biocatalysts ; Biodegradation, Environmental ; Bioelectric Energy Sources - microbiology ; bioelectricity ; Biofilms ; Bioremediation ; Carbon ; Catalysts ; Chemical oxygen demand ; Copper - chemistry ; Copper - metabolism ; Electric currents ; Electricity generation ; Electrodes ; Food contamination &amp; poisoning ; Fruits ; Fuel cell industry ; Fuel cells ; Heavy metals ; Hydrogen-Ion Concentration ; Metals, Heavy ; microbial fuel cells ; Microorganisms ; Purification ; removal ; Rivers ; Sewage ; Wastewater ; Water Pollutants, Chemical - metabolism</subject><ispartof>Molecules (Basel, Switzerland), 2024-06, Vol.29 (12), p.2725</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3826-2140 ; 0000-0001-5833-7130 ; 0000-0002-9664-0496 ; 0000-0001-9838-4847 ; 0000-0002-1972-8902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072619093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072619093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38930791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Segundo, Rojas-Flores</creatorcontrib><creatorcontrib>De La Cruz-Noriega, Magaly</creatorcontrib><creatorcontrib>Luis, Cabanillas-Chirinos</creatorcontrib><creatorcontrib>Otiniano, Nélida Milly</creatorcontrib><creatorcontrib>Soto-Deza, Nancy</creatorcontrib><creatorcontrib>Rojas-Villacorta, Walter</creatorcontrib><creatorcontrib>De La Cruz-Cerquin, Mayra</creatorcontrib><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD shown was 376.20 ± 15.478 mW/cm , with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</description><subject>agricultural wastewater</subject><subject>Arsenic</subject><subject>Arsenic - metabolism</subject><subject>Bacillus - metabolism</subject><subject>Bacteria</subject><subject>Biocatalysts</subject><subject>Biodegradation, Environmental</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>bioelectricity</subject><subject>Biofilms</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical oxygen demand</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Electric currents</subject><subject>Electricity generation</subject><subject>Electrodes</subject><subject>Food contamination &amp; poisoning</subject><subject>Fruits</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metals, Heavy</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Purification</subject><subject>removal</subject><subject>Rivers</subject><subject>Sewage</subject><subject>Wastewater</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u1DAQxyMEou3CA3BBlrhw2eKvOPEJtSsKK7UCofYcTZxx1isnLnZSsS_Ac9ftFrRFPtia-c9vvlwU7xg9FULTT0PwaGaPiWvGecXLF8Uxk5wuBZX65cH7qDhJaUspZ5KVr4sjUWtBK82Oiz8_sZvN5MJIgiXX4bcz5Aon8GQdxkRg7MiPGA4k5y5gzjpFZ9y0I9MmhrnfkCtnYmhdjruY0ZMVep_ITXJjT87BOO_nRAaILlkPd45ARj-gDORUuzS9KV5Z8AnfPt2L4ubiy_Xq2_Ly-9f16uxy2YlKTEteCVBo0ZSdYQo1BWEsg9Kgtkq1CrHtFJem1ZrzVmrF6hJkqSqhSiu1FItived2AbbNbXS5pl0TwDWPhhD7BuLkjMfGGmaEbIHVVspWla0FowXUmldlzSVm1uc963ZuB-wMjlME_wz63DO6TdOHu4YxTsuqppnw8YkQw68Z09QMLpk8OhgxzKnJO-I1rR62tSg-_CfdhjmOeVaPKsU01SKrTveqHnIHbrQhJzb5dDg4E0a0LtvPKq3zlPL-c8D7wx7-Ff_3g4h7rxTAqw</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Segundo, Rojas-Flores</creator><creator>De La Cruz-Noriega, Magaly</creator><creator>Luis, Cabanillas-Chirinos</creator><creator>Otiniano, Nélida Milly</creator><creator>Soto-Deza, Nancy</creator><creator>Rojas-Villacorta, Walter</creator><creator>De La Cruz-Cerquin, Mayra</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3826-2140</orcidid><orcidid>https://orcid.org/0000-0001-5833-7130</orcidid><orcidid>https://orcid.org/0000-0002-9664-0496</orcidid><orcidid>https://orcid.org/0000-0001-9838-4847</orcidid><orcidid>https://orcid.org/0000-0002-1972-8902</orcidid></search><sort><creationdate>20240607</creationdate><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><author>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agricultural wastewater</topic><topic>Arsenic</topic><topic>Arsenic - metabolism</topic><topic>Bacillus - metabolism</topic><topic>Bacteria</topic><topic>Biocatalysts</topic><topic>Biodegradation, Environmental</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>bioelectricity</topic><topic>Biofilms</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical oxygen demand</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Electric currents</topic><topic>Electricity generation</topic><topic>Electrodes</topic><topic>Food contamination &amp; poisoning</topic><topic>Fruits</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metals, Heavy</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Purification</topic><topic>removal</topic><topic>Rivers</topic><topic>Sewage</topic><topic>Wastewater</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segundo, Rojas-Flores</creatorcontrib><creatorcontrib>De La Cruz-Noriega, Magaly</creatorcontrib><creatorcontrib>Luis, Cabanillas-Chirinos</creatorcontrib><creatorcontrib>Otiniano, Nélida Milly</creatorcontrib><creatorcontrib>Soto-Deza, Nancy</creatorcontrib><creatorcontrib>Rojas-Villacorta, Walter</creatorcontrib><creatorcontrib>De La Cruz-Cerquin, Mayra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segundo, Rojas-Flores</au><au>De La Cruz-Noriega, Magaly</au><au>Luis, Cabanillas-Chirinos</au><au>Otiniano, Nélida Milly</au><au>Soto-Deza, Nancy</au><au>Rojas-Villacorta, Walter</au><au>De La Cruz-Cerquin, Mayra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>29</volume><issue>12</issue><spage>2725</spage><pages>2725-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD shown was 376.20 ± 15.478 mW/cm , with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38930791</pmid><doi>10.3390/molecules29122725</doi><orcidid>https://orcid.org/0000-0002-3826-2140</orcidid><orcidid>https://orcid.org/0000-0001-5833-7130</orcidid><orcidid>https://orcid.org/0000-0002-9664-0496</orcidid><orcidid>https://orcid.org/0000-0001-9838-4847</orcidid><orcidid>https://orcid.org/0000-0002-1972-8902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2024-06, Vol.29 (12), p.2725
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e
source PubMed Central Free; Publicly Available Content Database
subjects agricultural wastewater
Arsenic
Arsenic - metabolism
Bacillus - metabolism
Bacteria
Biocatalysts
Biodegradation, Environmental
Bioelectric Energy Sources - microbiology
bioelectricity
Biofilms
Bioremediation
Carbon
Catalysts
Chemical oxygen demand
Copper - chemistry
Copper - metabolism
Electric currents
Electricity generation
Electrodes
Food contamination & poisoning
Fruits
Fuel cell industry
Fuel cells
Heavy metals
Hydrogen-Ion Concentration
Metals, Heavy
microbial fuel cells
Microorganisms
Purification
removal
Rivers
Sewage
Wastewater
Water Pollutants, Chemical - metabolism
title Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Toxic%20Metal%20Ions%20and%20Production%20of%20Bioelectricity%20through%20Microbial%20Fuel%20Cells%20Using%20Bacillus%20marisflavi%20as%20a%20Biocatalyst&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Segundo,%20Rojas-Flores&rft.date=2024-06-07&rft.volume=29&rft.issue=12&rft.spage=2725&rft.pages=2725-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29122725&rft_dat=%3Cgale_doaj_%3EA799624791%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072619093&rft_id=info:pmid/38930791&rft_galeid=A799624791&rfr_iscdi=true