Loading…
Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst
Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricult...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (12), p.2725 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | 2725 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 29 |
creator | Segundo, Rojas-Flores De La Cruz-Noriega, Magaly Luis, Cabanillas-Chirinos Otiniano, Nélida Milly Soto-Deza, Nancy Rojas-Villacorta, Walter De La Cruz-Cerquin, Mayra |
description | Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and
as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD
shown was 376.20 ± 15.478 mW/cm
, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way. |
doi_str_mv | 10.3390/molecules29122725 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799624791</galeid><doaj_id>oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e</doaj_id><sourcerecordid>A799624791</sourcerecordid><originalsourceid>FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943</originalsourceid><addsrcrecordid>eNpdks1u1DAQxyMEou3CA3BBlrhw2eKvOPEJtSsKK7UCofYcTZxx1isnLnZSsS_Ac9ftFrRFPtia-c9vvlwU7xg9FULTT0PwaGaPiWvGecXLF8Uxk5wuBZX65cH7qDhJaUspZ5KVr4sjUWtBK82Oiz8_sZvN5MJIgiXX4bcz5Aon8GQdxkRg7MiPGA4k5y5gzjpFZ9y0I9MmhrnfkCtnYmhdjruY0ZMVep_ITXJjT87BOO_nRAaILlkPd45ARj-gDORUuzS9KV5Z8AnfPt2L4ubiy_Xq2_Ly-9f16uxy2YlKTEteCVBo0ZSdYQo1BWEsg9Kgtkq1CrHtFJem1ZrzVmrF6hJkqSqhSiu1FItived2AbbNbXS5pl0TwDWPhhD7BuLkjMfGGmaEbIHVVspWla0FowXUmldlzSVm1uc963ZuB-wMjlME_wz63DO6TdOHu4YxTsuqppnw8YkQw68Z09QMLpk8OhgxzKnJO-I1rR62tSg-_CfdhjmOeVaPKsU01SKrTveqHnIHbrQhJzb5dDg4E0a0LtvPKq3zlPL-c8D7wx7-Ff_3g4h7rxTAqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072619093</pqid></control><display><type>article</type><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</creator><creatorcontrib>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</creatorcontrib><description>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and
as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD
shown was 376.20 ± 15.478 mW/cm
, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29122725</identifier><identifier>PMID: 38930791</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>agricultural wastewater ; Arsenic ; Arsenic - metabolism ; Bacillus - metabolism ; Bacteria ; Biocatalysts ; Biodegradation, Environmental ; Bioelectric Energy Sources - microbiology ; bioelectricity ; Biofilms ; Bioremediation ; Carbon ; Catalysts ; Chemical oxygen demand ; Copper - chemistry ; Copper - metabolism ; Electric currents ; Electricity generation ; Electrodes ; Food contamination & poisoning ; Fruits ; Fuel cell industry ; Fuel cells ; Heavy metals ; Hydrogen-Ion Concentration ; Metals, Heavy ; microbial fuel cells ; Microorganisms ; Purification ; removal ; Rivers ; Sewage ; Wastewater ; Water Pollutants, Chemical - metabolism</subject><ispartof>Molecules (Basel, Switzerland), 2024-06, Vol.29 (12), p.2725</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3826-2140 ; 0000-0001-5833-7130 ; 0000-0002-9664-0496 ; 0000-0001-9838-4847 ; 0000-0002-1972-8902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072619093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072619093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38930791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Segundo, Rojas-Flores</creatorcontrib><creatorcontrib>De La Cruz-Noriega, Magaly</creatorcontrib><creatorcontrib>Luis, Cabanillas-Chirinos</creatorcontrib><creatorcontrib>Otiniano, Nélida Milly</creatorcontrib><creatorcontrib>Soto-Deza, Nancy</creatorcontrib><creatorcontrib>Rojas-Villacorta, Walter</creatorcontrib><creatorcontrib>De La Cruz-Cerquin, Mayra</creatorcontrib><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and
as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD
shown was 376.20 ± 15.478 mW/cm
, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</description><subject>agricultural wastewater</subject><subject>Arsenic</subject><subject>Arsenic - metabolism</subject><subject>Bacillus - metabolism</subject><subject>Bacteria</subject><subject>Biocatalysts</subject><subject>Biodegradation, Environmental</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>bioelectricity</subject><subject>Biofilms</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical oxygen demand</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Electric currents</subject><subject>Electricity generation</subject><subject>Electrodes</subject><subject>Food contamination & poisoning</subject><subject>Fruits</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metals, Heavy</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Purification</subject><subject>removal</subject><subject>Rivers</subject><subject>Sewage</subject><subject>Wastewater</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u1DAQxyMEou3CA3BBlrhw2eKvOPEJtSsKK7UCofYcTZxx1isnLnZSsS_Ac9ftFrRFPtia-c9vvlwU7xg9FULTT0PwaGaPiWvGecXLF8Uxk5wuBZX65cH7qDhJaUspZ5KVr4sjUWtBK82Oiz8_sZvN5MJIgiXX4bcz5Aon8GQdxkRg7MiPGA4k5y5gzjpFZ9y0I9MmhrnfkCtnYmhdjruY0ZMVep_ITXJjT87BOO_nRAaILlkPd45ARj-gDORUuzS9KV5Z8AnfPt2L4ubiy_Xq2_Ly-9f16uxy2YlKTEteCVBo0ZSdYQo1BWEsg9Kgtkq1CrHtFJem1ZrzVmrF6hJkqSqhSiu1FItived2AbbNbXS5pl0TwDWPhhD7BuLkjMfGGmaEbIHVVspWla0FowXUmldlzSVm1uc963ZuB-wMjlME_wz63DO6TdOHu4YxTsuqppnw8YkQw68Z09QMLpk8OhgxzKnJO-I1rR62tSg-_CfdhjmOeVaPKsU01SKrTveqHnIHbrQhJzb5dDg4E0a0LtvPKq3zlPL-c8D7wx7-Ff_3g4h7rxTAqw</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Segundo, Rojas-Flores</creator><creator>De La Cruz-Noriega, Magaly</creator><creator>Luis, Cabanillas-Chirinos</creator><creator>Otiniano, Nélida Milly</creator><creator>Soto-Deza, Nancy</creator><creator>Rojas-Villacorta, Walter</creator><creator>De La Cruz-Cerquin, Mayra</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3826-2140</orcidid><orcidid>https://orcid.org/0000-0001-5833-7130</orcidid><orcidid>https://orcid.org/0000-0002-9664-0496</orcidid><orcidid>https://orcid.org/0000-0001-9838-4847</orcidid><orcidid>https://orcid.org/0000-0002-1972-8902</orcidid></search><sort><creationdate>20240607</creationdate><title>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</title><author>Segundo, Rojas-Flores ; De La Cruz-Noriega, Magaly ; Luis, Cabanillas-Chirinos ; Otiniano, Nélida Milly ; Soto-Deza, Nancy ; Rojas-Villacorta, Walter ; De La Cruz-Cerquin, Mayra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agricultural wastewater</topic><topic>Arsenic</topic><topic>Arsenic - metabolism</topic><topic>Bacillus - metabolism</topic><topic>Bacteria</topic><topic>Biocatalysts</topic><topic>Biodegradation, Environmental</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>bioelectricity</topic><topic>Biofilms</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical oxygen demand</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Electric currents</topic><topic>Electricity generation</topic><topic>Electrodes</topic><topic>Food contamination & poisoning</topic><topic>Fruits</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metals, Heavy</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Purification</topic><topic>removal</topic><topic>Rivers</topic><topic>Sewage</topic><topic>Wastewater</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segundo, Rojas-Flores</creatorcontrib><creatorcontrib>De La Cruz-Noriega, Magaly</creatorcontrib><creatorcontrib>Luis, Cabanillas-Chirinos</creatorcontrib><creatorcontrib>Otiniano, Nélida Milly</creatorcontrib><creatorcontrib>Soto-Deza, Nancy</creatorcontrib><creatorcontrib>Rojas-Villacorta, Walter</creatorcontrib><creatorcontrib>De La Cruz-Cerquin, Mayra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segundo, Rojas-Flores</au><au>De La Cruz-Noriega, Magaly</au><au>Luis, Cabanillas-Chirinos</au><au>Otiniano, Nélida Milly</au><au>Soto-Deza, Nancy</au><au>Rojas-Villacorta, Walter</au><au>De La Cruz-Cerquin, Mayra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>29</volume><issue>12</issue><spage>2725</spage><pages>2725-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and
as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PD
shown was 376.20 ± 15.478 mW/cm
, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38930791</pmid><doi>10.3390/molecules29122725</doi><orcidid>https://orcid.org/0000-0002-3826-2140</orcidid><orcidid>https://orcid.org/0000-0001-5833-7130</orcidid><orcidid>https://orcid.org/0000-0002-9664-0496</orcidid><orcidid>https://orcid.org/0000-0001-9838-4847</orcidid><orcidid>https://orcid.org/0000-0002-1972-8902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2024-06, Vol.29 (12), p.2725 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc1c34ba18f44b65bfac93a89275824e |
source | PubMed Central Free; Publicly Available Content Database |
subjects | agricultural wastewater Arsenic Arsenic - metabolism Bacillus - metabolism Bacteria Biocatalysts Biodegradation, Environmental Bioelectric Energy Sources - microbiology bioelectricity Biofilms Bioremediation Carbon Catalysts Chemical oxygen demand Copper - chemistry Copper - metabolism Electric currents Electricity generation Electrodes Food contamination & poisoning Fruits Fuel cell industry Fuel cells Heavy metals Hydrogen-Ion Concentration Metals, Heavy microbial fuel cells Microorganisms Purification removal Rivers Sewage Wastewater Water Pollutants, Chemical - metabolism |
title | Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Toxic%20Metal%20Ions%20and%20Production%20of%20Bioelectricity%20through%20Microbial%20Fuel%20Cells%20Using%20Bacillus%20marisflavi%20as%20a%20Biocatalyst&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Segundo,%20Rojas-Flores&rft.date=2024-06-07&rft.volume=29&rft.issue=12&rft.spage=2725&rft.pages=2725-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29122725&rft_dat=%3Cgale_doaj_%3EA799624791%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d373t-273a6efec5dc16e90a3cf1a5ce9f66b6eebd624cb9922b496185a4567365f4943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072619093&rft_id=info:pmid/38930791&rft_galeid=A799624791&rfr_iscdi=true |