Loading…
Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology
The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's...
Saved in:
Published in: | Frontiers in cellular neuroscience 2014-06, Vol.8, p.177-177 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093 |
container_end_page | 177 |
container_issue | |
container_start_page | 177 |
container_title | Frontiers in cellular neuroscience |
container_volume | 8 |
creator | Liu, Jin Pasini, Silvia Shelanski, Michael L Greene, Lloyd A |
description | The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels. |
doi_str_mv | 10.3389/fncel.2014.00177 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc23f20a9e074ccbb6fc0e5053a32ed0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc23f20a9e074ccbb6fc0e5053a32ed0</doaj_id><sourcerecordid>2278048181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEoqWwZ4UisSmLDNfvZIM0qihUqsSmrC3Hj2mGxA62M9L8-3pmStWy8uOe8-le-1TVRwQrQtruq_PajisMiK4AkBCvqnPEOW4YAvz62f6sepfSFoBjTtu31RlmIBCl-Lz6s9Z52Kk8-E2do_JJx2HOQ_C1UzqHWNP6cn13Tb_UUzDLqLJN9RxSbtLeqyLUtbE7O4Z5sj7Xypty9iYOh0qaB2-LL873YQyb_fvqjVNjsh8e14vq9_X3u6ufze2vHzdX69tGM8ZzwygXuGuNUIJwaBWnzhLRC2SF04Z1FKneOAQEM4wx0aynVHfO8b5riYGOXFQ3J64JaivnOEwq7mVQgzxehLiRKpYGRyudxsRhUJ0FQbXue-40WAaMKIKtgcL6dmLNSz9Zo8uUUY0voC8rfriXm7CTFAQjhBXA5SMghr-LTVlOQyq_Nipvw5IkYrTjhCOKi_Tzf9JtWKIvTyUxFi3QFrWoqOCk0jGkFK17agaBPKRCHlMhD6mQx1QUy6fnQzwZ_sWAPAB2E7Uz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278048181</pqid></control><display><type>article</type><title>Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Jin ; Pasini, Silvia ; Shelanski, Michael L ; Greene, Lloyd A</creator><creatorcontrib>Liu, Jin ; Pasini, Silvia ; Shelanski, Michael L ; Greene, Lloyd A</creatorcontrib><description>The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2014.00177</identifier><identifier>PMID: 25071442</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Actin ; Activating transcription factor 4 ; ATF4 ; Binding sites ; Cdc42 ; Cdc42 protein ; Dendritic plasticity ; Dendritic spines ; Deoxyribonucleic acid ; Developmental plasticity ; DNA ; Experiments ; Filopodia ; Gene expression ; Glutamic acid receptors (ionotropic) ; Hippocampus ; Hypoxia ; Kinases ; Morphology ; mushroom spine ; Mutation ; Neurons ; Neuroplasticity ; Neuroscience ; Overexpression ; post-synaptic development ; Postsynaptic density proteins ; Roles ; Schizophrenia ; Synaptic plasticity ; Synaptogenesis ; Transcription factors</subject><ispartof>Frontiers in cellular neuroscience, 2014-06, Vol.8, p.177-177</ispartof><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014 Liu, Pasini, Shelanski and Greene. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093</citedby><cites>FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2278048181/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2278048181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25071442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Pasini, Silvia</creatorcontrib><creatorcontrib>Shelanski, Michael L</creatorcontrib><creatorcontrib>Greene, Lloyd A</creatorcontrib><title>Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels.</description><subject>Actin</subject><subject>Activating transcription factor 4</subject><subject>ATF4</subject><subject>Binding sites</subject><subject>Cdc42</subject><subject>Cdc42 protein</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental plasticity</subject><subject>DNA</subject><subject>Experiments</subject><subject>Filopodia</subject><subject>Gene expression</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Hippocampus</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Morphology</subject><subject>mushroom spine</subject><subject>Mutation</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Neuroscience</subject><subject>Overexpression</subject><subject>post-synaptic development</subject><subject>Postsynaptic density proteins</subject><subject>Roles</subject><subject>Schizophrenia</subject><subject>Synaptic plasticity</subject><subject>Synaptogenesis</subject><subject>Transcription factors</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEoqWwZ4UisSmLDNfvZIM0qihUqsSmrC3Hj2mGxA62M9L8-3pmStWy8uOe8-le-1TVRwQrQtruq_PajisMiK4AkBCvqnPEOW4YAvz62f6sepfSFoBjTtu31RlmIBCl-Lz6s9Z52Kk8-E2do_JJx2HOQ_C1UzqHWNP6cn13Tb_UUzDLqLJN9RxSbtLeqyLUtbE7O4Z5sj7Xypty9iYOh0qaB2-LL873YQyb_fvqjVNjsh8e14vq9_X3u6ufze2vHzdX69tGM8ZzwygXuGuNUIJwaBWnzhLRC2SF04Z1FKneOAQEM4wx0aynVHfO8b5riYGOXFQ3J64JaivnOEwq7mVQgzxehLiRKpYGRyudxsRhUJ0FQbXue-40WAaMKIKtgcL6dmLNSz9Zo8uUUY0voC8rfriXm7CTFAQjhBXA5SMghr-LTVlOQyq_Nipvw5IkYrTjhCOKi_Tzf9JtWKIvTyUxFi3QFrWoqOCk0jGkFK17agaBPKRCHlMhD6mQx1QUy6fnQzwZ_sWAPAB2E7Uz</recordid><startdate>20140630</startdate><enddate>20140630</enddate><creator>Liu, Jin</creator><creator>Pasini, Silvia</creator><creator>Shelanski, Michael L</creator><creator>Greene, Lloyd A</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140630</creationdate><title>Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology</title><author>Liu, Jin ; Pasini, Silvia ; Shelanski, Michael L ; Greene, Lloyd A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Activating transcription factor 4</topic><topic>ATF4</topic><topic>Binding sites</topic><topic>Cdc42</topic><topic>Cdc42 protein</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental plasticity</topic><topic>DNA</topic><topic>Experiments</topic><topic>Filopodia</topic><topic>Gene expression</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Hippocampus</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Morphology</topic><topic>mushroom spine</topic><topic>Mutation</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Neuroscience</topic><topic>Overexpression</topic><topic>post-synaptic development</topic><topic>Postsynaptic density proteins</topic><topic>Roles</topic><topic>Schizophrenia</topic><topic>Synaptic plasticity</topic><topic>Synaptogenesis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Pasini, Silvia</creatorcontrib><creatorcontrib>Shelanski, Michael L</creatorcontrib><creatorcontrib>Greene, Lloyd A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jin</au><au>Pasini, Silvia</au><au>Shelanski, Michael L</au><au>Greene, Lloyd A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2014-06-30</date><risdate>2014</risdate><volume>8</volume><spage>177</spage><epage>177</epage><pages>177-177</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>The ubiquitously expressed activating transcription factor 4 (ATF4) has been variably reported to either promote or inhibit neuronal plasticity and memory. However, the potential cellular bases for these and other actions of ATF4 in brain are not well-defined. In this report, we focus on ATF4's role in post-synaptic synapse development and dendritic spine morphology. shRNA-mediated silencing of ATF4 significantly reduces the densities of PSD-95 and GluR1 puncta (presumed markers of excitatory synapses) in long-term cultures of cortical and hippocampal neurons. ATF4 knockdown also decreases the density of mushroom spines and increases formation of abnormally-long dendritic filopodia in such cultures. In vivo knockdown of ATF4 in adult mouse hippocampal neurons also reduces mushroom spine density. In contrast, ATF4 over-expression does not affect the densities of PSD-95 puncta or mushrooom spines. Regulation of synaptic puncta and spine densities by ATF4 requires its transcriptional activity and is mediated at least in part by indirectly controlling the stability and expression of the total and active forms of the actin regulatory protein Cdc42. In support of such a mechanism, ATF4 silencing decreases the half-life of Cdc42 in cultured cortical neurons from 31.5 to 18.5 h while knockdown of Cdc42, like ATF4 knockdown, reduces the densities of mushroom spines and PSD-95 puncta. Thus, ATF4 appears to participate in neuronal development and plasticity by regulating the post-synaptic development of synapses and dendritic mushroom spines via a mechanism that includes regulation of Cdc42 levels.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>25071442</pmid><doi>10.3389/fncel.2014.00177</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5102 |
ispartof | Frontiers in cellular neuroscience, 2014-06, Vol.8, p.177-177 |
issn | 1662-5102 1662-5102 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc23f20a9e074ccbb6fc0e5053a32ed0 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Actin Activating transcription factor 4 ATF4 Binding sites Cdc42 Cdc42 protein Dendritic plasticity Dendritic spines Deoxyribonucleic acid Developmental plasticity DNA Experiments Filopodia Gene expression Glutamic acid receptors (ionotropic) Hippocampus Hypoxia Kinases Morphology mushroom spine Mutation Neurons Neuroplasticity Neuroscience Overexpression post-synaptic development Postsynaptic density proteins Roles Schizophrenia Synaptic plasticity Synaptogenesis Transcription factors |
title | Activating transcription factor 4 (ATF4) modulates post-synaptic development and dendritic spine morphology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20transcription%20factor%204%20(ATF4)%20modulates%20post-synaptic%20development%20and%20dendritic%20spine%20morphology&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Liu,%20Jin&rft.date=2014-06-30&rft.volume=8&rft.spage=177&rft.epage=177&rft.pages=177-177&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2014.00177&rft_dat=%3Cproquest_doaj_%3E2278048181%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-5467298d7a73608a64fe37b71e7fcd5941abdf103252223c5b44c9ff6b983d093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2278048181&rft_id=info:pmid/25071442&rfr_iscdi=true |