Loading…

Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction

Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.7939
Main Authors: Kim, Da-Young, Lym, Hyo Jeong, Lee, Hanna, Lee, Ye Jun, Kim, Juhyun, Kim, Min-Gyu, Baek, Yunju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-5ebfedc4eda94f1732b225cc3b5584eca2df7019da5e39e4f1970163b8e826d73
container_end_page
container_issue 24
container_start_page 7939
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Kim, Da-Young
Lym, Hyo Jeong
Lee, Hanna
Lee, Ye Jun
Kim, Juhyun
Kim, Min-Gyu
Baek, Yunju
description Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of-the-art large language models (LLMs) for language understanding and contextual awareness cannot comprehend children's intent as accurately as humans because of their distinctive features. An LLM-based dialogue system should acquire the manner by which humans understand children's speech to enhance its intention reasoning performance in verbal interactions with children. To this end, we propose a fine-tuning methodology that utilizes the LLM-human judgment discrepancy and interactive response data. The former data represent cases in which the LLM and human judgments of the contextual appropriateness of a child's answer to a robot's question diverge. The latter data involve robot responses suitable for children's utterance intentions, generated by the LLM. We developed a fine-tuned dialogue system using these datasets to achieve human-like interpretations of children's utterances and to respond adaptively. Our system was evaluated through human assessment using the Robotic Social Attributes Scale (RoSAS) and Sensibleness and Specificity Average (SSA) metrics. Consequently, it supports the effective interpretation of children's utterance intentions and enables natural verbal interactions, even in cases with syntactic incompleteness and mispronunciations.
doi_str_mv 10.3390/s24247939
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc647ac8167d4ef28b042bde5ba2c1ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821975767</galeid><doaj_id>oai_doaj_org_article_fc647ac8167d4ef28b042bde5ba2c1ce</doaj_id><sourcerecordid>A821975767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5ebfedc4eda94f1732b225cc3b5584eca2df7019da5e39e4f1970163b8e826d73</originalsourceid><addsrcrecordid>eNpdkl9v1DAMwCsEYmPwwBdAkXiBh442f5qWt3EwOOkQEuyeqzRxSk5tsiXpw_j0uNw4IRTJdpyfndhxUbysq0vGuupdopxy2bHuUXFeo1m2lFaP_7HPimcpHaqKMsbap8UZ66SsG9mcF782P91kyg34HJ0m38MQMvno1BTGBciP-5RhTu_JtfNQ3ize-ZHsVBwBpR8XhcbXYGBKxIZIPkDOEMl-lcprIHtvIKasvFkDUZGtX890dsE_L55YNSV48aAviv31p5vNl3L37fN2c7UrNeMslwIGC0ZzMKrjtpaMDpQKrdkgRMtBK2qsrOrOKAGsA0Q63DZsaKGljZHsotge85qgDv1tdLOK931Qrv_jCHHsVcxOT9Bb3XCpdIu9MRwsbYeK08GAGBTVtQbM9eaY6zaGuwVS7meXNEyT8hCW1LNasFZybDOir_9DD2GJHitFindSiJpypC6P1KjwfudtyNgeXAZmp4MH69B_1VKsSshmrebtMUDHkFIEe6qorvp1GvrTNCD76uEJyzCDOZF_v5_9Brfsr0c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149755124</pqid></control><display><type>article</type><title>Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Kim, Da-Young ; Lym, Hyo Jeong ; Lee, Hanna ; Lee, Ye Jun ; Kim, Juhyun ; Kim, Min-Gyu ; Baek, Yunju</creator><creatorcontrib>Kim, Da-Young ; Lym, Hyo Jeong ; Lee, Hanna ; Lee, Ye Jun ; Kim, Juhyun ; Kim, Min-Gyu ; Baek, Yunju</creatorcontrib><description>Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of-the-art large language models (LLMs) for language understanding and contextual awareness cannot comprehend children's intent as accurately as humans because of their distinctive features. An LLM-based dialogue system should acquire the manner by which humans understand children's speech to enhance its intention reasoning performance in verbal interactions with children. To this end, we propose a fine-tuning methodology that utilizes the LLM-human judgment discrepancy and interactive response data. The former data represent cases in which the LLM and human judgments of the contextual appropriateness of a child's answer to a robot's question diverge. The latter data involve robot responses suitable for children's utterance intentions, generated by the LLM. We developed a fine-tuned dialogue system using these datasets to achieve human-like interpretations of children's utterances and to respond adaptively. Our system was evaluated through human assessment using the Robotic Social Attributes Scale (RoSAS) and Sensibleness and Specificity Average (SSA) metrics. Consequently, it supports the effective interpretation of children's utterance intentions and enables natural verbal interactions, even in cases with syntactic incompleteness and mispronunciations.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24247939</identifier><identifier>PMID: 39771676</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; Artificial intelligence ; Behavior ; Child ; Child, Preschool ; Children ; Children &amp; youth ; child–robot interaction ; Comprehension - physiology ; Customization ; Datasets ; Design ; dialogue system ; Emotions ; Feedback ; Humans ; human–robot interaction ; Interactive computer systems ; Language ; Large language models ; Linguistics ; Natural language processing ; Pandemics ; Robotics - methods ; Robots ; social robots ; Speech ; Verbal communication ; Voice recognition</subject><ispartof>Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.7939</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-5ebfedc4eda94f1732b225cc3b5584eca2df7019da5e39e4f1970163b8e826d73</cites><orcidid>0009-0006-5149-3054 ; 0000-0002-2071-8779 ; 0000-0002-5624-7008 ; 0000-0003-0744-8812 ; 0000-0002-3998-3927 ; 0000-0002-3771-8070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149755124/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149755124?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,38493,43871,44566,74155,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39771676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Da-Young</creatorcontrib><creatorcontrib>Lym, Hyo Jeong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Lee, Ye Jun</creatorcontrib><creatorcontrib>Kim, Juhyun</creatorcontrib><creatorcontrib>Kim, Min-Gyu</creatorcontrib><creatorcontrib>Baek, Yunju</creatorcontrib><title>Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of-the-art large language models (LLMs) for language understanding and contextual awareness cannot comprehend children's intent as accurately as humans because of their distinctive features. An LLM-based dialogue system should acquire the manner by which humans understand children's speech to enhance its intention reasoning performance in verbal interactions with children. To this end, we propose a fine-tuning methodology that utilizes the LLM-human judgment discrepancy and interactive response data. The former data represent cases in which the LLM and human judgments of the contextual appropriateness of a child's answer to a robot's question diverge. The latter data involve robot responses suitable for children's utterance intentions, generated by the LLM. We developed a fine-tuned dialogue system using these datasets to achieve human-like interpretations of children's utterances and to respond adaptively. Our system was evaluated through human assessment using the Robotic Social Attributes Scale (RoSAS) and Sensibleness and Specificity Average (SSA) metrics. Consequently, it supports the effective interpretation of children's utterance intentions and enables natural verbal interactions, even in cases with syntactic incompleteness and mispronunciations.</description><subject>Adaptation</subject><subject>Artificial intelligence</subject><subject>Behavior</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Children &amp; youth</subject><subject>child–robot interaction</subject><subject>Comprehension - physiology</subject><subject>Customization</subject><subject>Datasets</subject><subject>Design</subject><subject>dialogue system</subject><subject>Emotions</subject><subject>Feedback</subject><subject>Humans</subject><subject>human–robot interaction</subject><subject>Interactive computer systems</subject><subject>Language</subject><subject>Large language models</subject><subject>Linguistics</subject><subject>Natural language processing</subject><subject>Pandemics</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>social robots</subject><subject>Speech</subject><subject>Verbal communication</subject><subject>Voice recognition</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl9v1DAMwCsEYmPwwBdAkXiBh442f5qWt3EwOOkQEuyeqzRxSk5tsiXpw_j0uNw4IRTJdpyfndhxUbysq0vGuupdopxy2bHuUXFeo1m2lFaP_7HPimcpHaqKMsbap8UZ66SsG9mcF782P91kyg34HJ0m38MQMvno1BTGBciP-5RhTu_JtfNQ3ize-ZHsVBwBpR8XhcbXYGBKxIZIPkDOEMl-lcprIHtvIKasvFkDUZGtX890dsE_L55YNSV48aAviv31p5vNl3L37fN2c7UrNeMslwIGC0ZzMKrjtpaMDpQKrdkgRMtBK2qsrOrOKAGsA0Q63DZsaKGljZHsotge85qgDv1tdLOK931Qrv_jCHHsVcxOT9Bb3XCpdIu9MRwsbYeK08GAGBTVtQbM9eaY6zaGuwVS7meXNEyT8hCW1LNasFZybDOir_9DD2GJHitFindSiJpypC6P1KjwfudtyNgeXAZmp4MH69B_1VKsSshmrebtMUDHkFIEe6qorvp1GvrTNCD76uEJyzCDOZF_v5_9Brfsr0c</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Kim, Da-Young</creator><creator>Lym, Hyo Jeong</creator><creator>Lee, Hanna</creator><creator>Lee, Ye Jun</creator><creator>Kim, Juhyun</creator><creator>Kim, Min-Gyu</creator><creator>Baek, Yunju</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-5149-3054</orcidid><orcidid>https://orcid.org/0000-0002-2071-8779</orcidid><orcidid>https://orcid.org/0000-0002-5624-7008</orcidid><orcidid>https://orcid.org/0000-0003-0744-8812</orcidid><orcidid>https://orcid.org/0000-0002-3998-3927</orcidid><orcidid>https://orcid.org/0000-0002-3771-8070</orcidid></search><sort><creationdate>20241212</creationdate><title>Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction</title><author>Kim, Da-Young ; Lym, Hyo Jeong ; Lee, Hanna ; Lee, Ye Jun ; Kim, Juhyun ; Kim, Min-Gyu ; Baek, Yunju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5ebfedc4eda94f1732b225cc3b5584eca2df7019da5e39e4f1970163b8e826d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Artificial intelligence</topic><topic>Behavior</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Children &amp; youth</topic><topic>child–robot interaction</topic><topic>Comprehension - physiology</topic><topic>Customization</topic><topic>Datasets</topic><topic>Design</topic><topic>dialogue system</topic><topic>Emotions</topic><topic>Feedback</topic><topic>Humans</topic><topic>human–robot interaction</topic><topic>Interactive computer systems</topic><topic>Language</topic><topic>Large language models</topic><topic>Linguistics</topic><topic>Natural language processing</topic><topic>Pandemics</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>social robots</topic><topic>Speech</topic><topic>Verbal communication</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Da-Young</creatorcontrib><creatorcontrib>Lym, Hyo Jeong</creatorcontrib><creatorcontrib>Lee, Hanna</creatorcontrib><creatorcontrib>Lee, Ye Jun</creatorcontrib><creatorcontrib>Kim, Juhyun</creatorcontrib><creatorcontrib>Kim, Min-Gyu</creatorcontrib><creatorcontrib>Baek, Yunju</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Da-Young</au><au>Lym, Hyo Jeong</au><au>Lee, Hanna</au><au>Lee, Ye Jun</au><au>Kim, Juhyun</au><au>Kim, Min-Gyu</au><au>Baek, Yunju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>7939</spage><pages>7939-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of-the-art large language models (LLMs) for language understanding and contextual awareness cannot comprehend children's intent as accurately as humans because of their distinctive features. An LLM-based dialogue system should acquire the manner by which humans understand children's speech to enhance its intention reasoning performance in verbal interactions with children. To this end, we propose a fine-tuning methodology that utilizes the LLM-human judgment discrepancy and interactive response data. The former data represent cases in which the LLM and human judgments of the contextual appropriateness of a child's answer to a robot's question diverge. The latter data involve robot responses suitable for children's utterance intentions, generated by the LLM. We developed a fine-tuned dialogue system using these datasets to achieve human-like interpretations of children's utterances and to respond adaptively. Our system was evaluated through human assessment using the Robotic Social Attributes Scale (RoSAS) and Sensibleness and Specificity Average (SSA) metrics. Consequently, it supports the effective interpretation of children's utterance intentions and enables natural verbal interactions, even in cases with syntactic incompleteness and mispronunciations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39771676</pmid><doi>10.3390/s24247939</doi><orcidid>https://orcid.org/0009-0006-5149-3054</orcidid><orcidid>https://orcid.org/0000-0002-2071-8779</orcidid><orcidid>https://orcid.org/0000-0002-5624-7008</orcidid><orcidid>https://orcid.org/0000-0003-0744-8812</orcidid><orcidid>https://orcid.org/0000-0002-3998-3927</orcidid><orcidid>https://orcid.org/0000-0002-3771-8070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-12, Vol.24 (24), p.7939
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fc647ac8167d4ef28b042bde5ba2c1ce
source PubMed Central (Open Access); Publicly Available Content Database; Coronavirus Research Database
subjects Adaptation
Artificial intelligence
Behavior
Child
Child, Preschool
Children
Children & youth
child–robot interaction
Comprehension - physiology
Customization
Datasets
Design
dialogue system
Emotions
Feedback
Humans
human–robot interaction
Interactive computer systems
Language
Large language models
Linguistics
Natural language processing
Pandemics
Robotics - methods
Robots
social robots
Speech
Verbal communication
Voice recognition
title Child-Centric Robot Dialogue Systems: Fine-Tuning Large Language Models for Better Utterance Understanding and Interaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Child-Centric%20Robot%20Dialogue%20Systems:%20Fine-Tuning%20Large%20Language%20Models%20for%20Better%20Utterance%20Understanding%20and%20Interaction&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Kim,%20Da-Young&rft.date=2024-12-12&rft.volume=24&rft.issue=24&rft.spage=7939&rft.pages=7939-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24247939&rft_dat=%3Cgale_doaj_%3EA821975767%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-5ebfedc4eda94f1732b225cc3b5584eca2df7019da5e39e4f1970163b8e826d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149755124&rft_id=info:pmid/39771676&rft_galeid=A821975767&rfr_iscdi=true