Loading…
A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment
Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced ci...
Saved in:
Published in: | Proteome science 2009-01, Vol.7 (1), p.1-1 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b610t-93f136560d9e8ce0a24031aecef9d1b50bb802501290295b8c42fdb7b19886603 |
---|---|
cites | |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 1 |
container_title | Proteome science |
container_volume | 7 |
creator | Rajaseger, Ganapathy Lim, Chin Leong Wui, Lee Koon Saravanan, Padmanabhan Tang, Kai Gopalakrishnakone, Ponnampalam Pen-Huat, Yap Eric Lu, Jia Shabbir, Moochhala M |
description | Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.
The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.
The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects. |
doi_str_mv | 10.1186/1477-5956-7-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc656efbbb834732a41eb565446eb8c4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192069045</galeid><doaj_id>oai_doaj_org_article_fc656efbbb834732a41eb565446eb8c4</doaj_id><sourcerecordid>A192069045</sourcerecordid><originalsourceid>FETCH-LOGICAL-b610t-93f136560d9e8ce0a24031aecef9d1b50bb802501290295b8c42fdb7b19886603</originalsourceid><addsrcrecordid>eNp1ks2P1CAUwBujcdfVo1dD4sF46Aq00HIxTjZ-TLKJiR9nAvQxw6YtI9DV_e-l28m6jRoOPODHDx6PonhO8DkhLX9D6qYpmWC8bEryoDi9Gz-8F58UT2K8wphSQfnj4oQIQjmt6WkxbVBMU3eD_IjSHlDnrIUAY3KqR4fgE7hx7q3rIaIc9-4aAjLQ9xF5i_agUjYEiBEFlSL66dIeqbG7DfyUUJrCYfaNgDKm0pAHT4tHVvURnh37s-L7h_ffLj6Vl58_bi82l6XmBKdSVJZUnHHcCWgNYEVrXBEFBqzoiGZY6xZThgkVmAqmW1NT2-lGE9G2nOPqrNgu3s6rK3kIblDhRnrl5O2EDzupQnKmB2lNPgiszsqqbiqqagKacVbXHGZxdr1dXIdJD9CZnEZQ_Uq6XhndXu78tcwvzVkrsuDdItDO_0ewXjF-kHMJ5VxC2UiSFa-Odwj-xwQxycHFuRZqBD9F2VSVIC2rq0y-XMidysm50fqsNDMtN0RQzAWuWabO_0Hl1sHgjB9hLvt6w-vVhswk-JV2aopRbr9-WbPlwprgYwxg71IlWM5_96_kXtx_4D_08bNWvwFaqupf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733918543</pqid></control><display><type>article</type><title>A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Rajaseger, Ganapathy ; Lim, Chin Leong ; Wui, Lee Koon ; Saravanan, Padmanabhan ; Tang, Kai ; Gopalakrishnakone, Ponnampalam ; Pen-Huat, Yap Eric ; Lu, Jia ; Shabbir, Moochhala M</creator><creatorcontrib>Rajaseger, Ganapathy ; Lim, Chin Leong ; Wui, Lee Koon ; Saravanan, Padmanabhan ; Tang, Kai ; Gopalakrishnakone, Ponnampalam ; Pen-Huat, Yap Eric ; Lu, Jia ; Shabbir, Moochhala M</creatorcontrib><description>Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.
The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.
The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.</description><identifier>ISSN: 1477-5956</identifier><identifier>EISSN: 1477-5956</identifier><identifier>DOI: 10.1186/1477-5956-7-1</identifier><identifier>PMID: 19126242</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Cellular proteins ; Heat stress disorders ; Liver cells ; Physiological aspects ; Properties</subject><ispartof>Proteome science, 2009-01, Vol.7 (1), p.1-1</ispartof><rights>COPYRIGHT 2009 BioMed Central Ltd.</rights><rights>Copyright © 2009 Rajaseger et al; licensee BioMed Central Ltd. 2009 Rajaseger et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b610t-93f136560d9e8ce0a24031aecef9d1b50bb802501290295b8c42fdb7b19886603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626589/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626589/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19126242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajaseger, Ganapathy</creatorcontrib><creatorcontrib>Lim, Chin Leong</creatorcontrib><creatorcontrib>Wui, Lee Koon</creatorcontrib><creatorcontrib>Saravanan, Padmanabhan</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><creatorcontrib>Gopalakrishnakone, Ponnampalam</creatorcontrib><creatorcontrib>Pen-Huat, Yap Eric</creatorcontrib><creatorcontrib>Lu, Jia</creatorcontrib><creatorcontrib>Shabbir, Moochhala M</creatorcontrib><title>A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment</title><title>Proteome science</title><addtitle>Proteome Sci</addtitle><description>Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.
The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.
The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.</description><subject>Cellular proteins</subject><subject>Heat stress disorders</subject><subject>Liver cells</subject><subject>Physiological aspects</subject><subject>Properties</subject><issn>1477-5956</issn><issn>1477-5956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1ks2P1CAUwBujcdfVo1dD4sF46Aq00HIxTjZ-TLKJiR9nAvQxw6YtI9DV_e-l28m6jRoOPODHDx6PonhO8DkhLX9D6qYpmWC8bEryoDi9Gz-8F58UT2K8wphSQfnj4oQIQjmt6WkxbVBMU3eD_IjSHlDnrIUAY3KqR4fgE7hx7q3rIaIc9-4aAjLQ9xF5i_agUjYEiBEFlSL66dIeqbG7DfyUUJrCYfaNgDKm0pAHT4tHVvURnh37s-L7h_ffLj6Vl58_bi82l6XmBKdSVJZUnHHcCWgNYEVrXBEFBqzoiGZY6xZThgkVmAqmW1NT2-lGE9G2nOPqrNgu3s6rK3kIblDhRnrl5O2EDzupQnKmB2lNPgiszsqqbiqqagKacVbXHGZxdr1dXIdJD9CZnEZQ_Uq6XhndXu78tcwvzVkrsuDdItDO_0ewXjF-kHMJ5VxC2UiSFa-Odwj-xwQxycHFuRZqBD9F2VSVIC2rq0y-XMidysm50fqsNDMtN0RQzAWuWabO_0Hl1sHgjB9hLvt6w-vVhswk-JV2aopRbr9-WbPlwprgYwxg71IlWM5_96_kXtx_4D_08bNWvwFaqupf</recordid><startdate>20090107</startdate><enddate>20090107</enddate><creator>Rajaseger, Ganapathy</creator><creator>Lim, Chin Leong</creator><creator>Wui, Lee Koon</creator><creator>Saravanan, Padmanabhan</creator><creator>Tang, Kai</creator><creator>Gopalakrishnakone, Ponnampalam</creator><creator>Pen-Huat, Yap Eric</creator><creator>Lu, Jia</creator><creator>Shabbir, Moochhala M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090107</creationdate><title>A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment</title><author>Rajaseger, Ganapathy ; Lim, Chin Leong ; Wui, Lee Koon ; Saravanan, Padmanabhan ; Tang, Kai ; Gopalakrishnakone, Ponnampalam ; Pen-Huat, Yap Eric ; Lu, Jia ; Shabbir, Moochhala M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b610t-93f136560d9e8ce0a24031aecef9d1b50bb802501290295b8c42fdb7b19886603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cellular proteins</topic><topic>Heat stress disorders</topic><topic>Liver cells</topic><topic>Physiological aspects</topic><topic>Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaseger, Ganapathy</creatorcontrib><creatorcontrib>Lim, Chin Leong</creatorcontrib><creatorcontrib>Wui, Lee Koon</creatorcontrib><creatorcontrib>Saravanan, Padmanabhan</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><creatorcontrib>Gopalakrishnakone, Ponnampalam</creatorcontrib><creatorcontrib>Pen-Huat, Yap Eric</creatorcontrib><creatorcontrib>Lu, Jia</creatorcontrib><creatorcontrib>Shabbir, Moochhala M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Proteome science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaseger, Ganapathy</au><au>Lim, Chin Leong</au><au>Wui, Lee Koon</au><au>Saravanan, Padmanabhan</au><au>Tang, Kai</au><au>Gopalakrishnakone, Ponnampalam</au><au>Pen-Huat, Yap Eric</au><au>Lu, Jia</au><au>Shabbir, Moochhala M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment</atitle><jtitle>Proteome science</jtitle><addtitle>Proteome Sci</addtitle><date>2009-01-07</date><risdate>2009</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1477-5956</issn><eissn>1477-5956</eissn><abstract>Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.
The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.
The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>19126242</pmid><doi>10.1186/1477-5956-7-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-5956 |
ispartof | Proteome science, 2009-01, Vol.7 (1), p.1-1 |
issn | 1477-5956 1477-5956 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc656efbbb834732a41eb565446eb8c4 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Cellular proteins Heat stress disorders Liver cells Physiological aspects Properties |
title | A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20differential%20protein%20profiles%20in%20liver%20cells%20of%20heat%20stress%20rats%20with%20and%20without%20turpentine%20treatment&rft.jtitle=Proteome%20science&rft.au=Rajaseger,%20Ganapathy&rft.date=2009-01-07&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1477-5956&rft.eissn=1477-5956&rft_id=info:doi/10.1186/1477-5956-7-1&rft_dat=%3Cgale_doaj_%3EA192069045%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b610t-93f136560d9e8ce0a24031aecef9d1b50bb802501290295b8c42fdb7b19886603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733918543&rft_id=info:pmid/19126242&rft_galeid=A192069045&rfr_iscdi=true |