Loading…
Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation
The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are c...
Saved in:
Published in: | ChemistryOpen (Weinheim) 2019-12, Vol.8 (12), p.1453-1459 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33 |
container_end_page | 1459 |
container_issue | 12 |
container_start_page | 1453 |
container_title | ChemistryOpen (Weinheim) |
container_volume | 8 |
creator | Pascher, Tobias F. Ončák, Milan Linde, Christian Beyer, Martin K. |
description | The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen.
Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts. |
doi_str_mv | 10.1002/open.201900282 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2</doaj_id><sourcerecordid>2331209732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXplSOKxIXLLh478QcHpGq7bVeqKBJwthzH3nqVxMF2Wvrv8e6WpeWCL56x33k0Y79F8RbQHBDCH_1ohjlGIHLC8YviGIOAGRBKXj6Jj4rTGDcoL1YJqOnr4ogAZ8Arflykc6N9P_rokvND6W258ONoQnnhQ6-SKRfdFJMJ8VO5GqJb36bSDcmXy870ZkgqPJTfkhnjrlJ12g1qB1JDm_PQ5PDc-V-uNeWZTu5ud_umeGVVF83p435S_LhYfl9cza5vLleLs-uZrhngGa-1EFS3ggtFmRCc2tqqtmKIE4prZSk0UFc1wVajBlfAGG0FsVDhBqwm5KRY7bmtVxs5BtfnfqVXTu4OfFhLFZLTnZFWM0yEVQoBqyrgohWALWKYIwWNwpn1ec8ap6Y3rc7DB9U9gz6_GdytXPs7SQVQWosM-PAICP7nZGKSvYvadJ0ajJ-ixIQgQqr8S1n6_h_pxk9hyE-1VQFGgpFtR_O9SgcfYzD20AwgufWH3PpDHvyRC949HeEg_-OGLBB7wb3rzMN_cPLm6_LLX_hv7F3G9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331209732</pqid></control><display><type>article</type><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</creator><creatorcontrib>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</creatorcontrib><description>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen.
Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.201900282</identifier><identifier>PMID: 31871848</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>calcination process ; Carbon dioxide ; Clusters ; Coordination compounds ; Copper compounds ; copper hydrides ; Copper oxides ; Cupric formate ; Decarboxylation ; Decomposition ; Decomposition reactions ; Formic acid ; Hydrides ; Hydrogen atoms ; Investigations ; mass spectrometry ; Morphology ; Nitrates ; Organic chemistry ; Oxidation ; Oxygen ; Quantum chemistry ; reaction mechanisms ; Redox reactions ; Roasting ; Theory ; Valence ; Vapor phases</subject><ispartof>ChemistryOpen (Weinheim), 2019-12, Vol.8 (12), p.1453-1459</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</citedby><cites>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</cites><orcidid>0000-0001-9373-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331209732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331209732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31871848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascher, Tobias F.</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><title>ChemistryOpen (Weinheim)</title><addtitle>ChemistryOpen</addtitle><description>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen.
Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</description><subject>calcination process</subject><subject>Carbon dioxide</subject><subject>Clusters</subject><subject>Coordination compounds</subject><subject>Copper compounds</subject><subject>copper hydrides</subject><subject>Copper oxides</subject><subject>Cupric formate</subject><subject>Decarboxylation</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Formic acid</subject><subject>Hydrides</subject><subject>Hydrogen atoms</subject><subject>Investigations</subject><subject>mass spectrometry</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Quantum chemistry</subject><subject>reaction mechanisms</subject><subject>Redox reactions</subject><subject>Roasting</subject><subject>Theory</subject><subject>Valence</subject><subject>Vapor phases</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXplSOKxIXLLh478QcHpGq7bVeqKBJwthzH3nqVxMF2Wvrv8e6WpeWCL56x33k0Y79F8RbQHBDCH_1ohjlGIHLC8YviGIOAGRBKXj6Jj4rTGDcoL1YJqOnr4ogAZ8Arflykc6N9P_rokvND6W258ONoQnnhQ6-SKRfdFJMJ8VO5GqJb36bSDcmXy870ZkgqPJTfkhnjrlJ12g1qB1JDm_PQ5PDc-V-uNeWZTu5ud_umeGVVF83p435S_LhYfl9cza5vLleLs-uZrhngGa-1EFS3ggtFmRCc2tqqtmKIE4prZSk0UFc1wVajBlfAGG0FsVDhBqwm5KRY7bmtVxs5BtfnfqVXTu4OfFhLFZLTnZFWM0yEVQoBqyrgohWALWKYIwWNwpn1ec8ap6Y3rc7DB9U9gz6_GdytXPs7SQVQWosM-PAICP7nZGKSvYvadJ0ajJ-ixIQgQqr8S1n6_h_pxk9hyE-1VQFGgpFtR_O9SgcfYzD20AwgufWH3PpDHvyRC949HeEg_-OGLBB7wb3rzMN_cPLm6_LLX_hv7F3G9Q</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pascher, Tobias F.</creator><creator>Ončák, Milan</creator><creator>Linde, Christian</creator><creator>Beyer, Martin K.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9373-9266</orcidid></search><sort><creationdate>201912</creationdate><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><author>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>calcination process</topic><topic>Carbon dioxide</topic><topic>Clusters</topic><topic>Coordination compounds</topic><topic>Copper compounds</topic><topic>copper hydrides</topic><topic>Copper oxides</topic><topic>Cupric formate</topic><topic>Decarboxylation</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Formic acid</topic><topic>Hydrides</topic><topic>Hydrogen atoms</topic><topic>Investigations</topic><topic>mass spectrometry</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Quantum chemistry</topic><topic>reaction mechanisms</topic><topic>Redox reactions</topic><topic>Roasting</topic><topic>Theory</topic><topic>Valence</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascher, Tobias F.</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascher, Tobias F.</au><au>Ončák, Milan</au><au>Linde, Christian</au><au>Beyer, Martin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><addtitle>ChemistryOpen</addtitle><date>2019-12</date><risdate>2019</risdate><volume>8</volume><issue>12</issue><spage>1453</spage><epage>1459</epage><pages>1453-1459</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen.
Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>31871848</pmid><doi>10.1002/open.201900282</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9373-9266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-1363 |
ispartof | ChemistryOpen (Weinheim), 2019-12, Vol.8 (12), p.1453-1459 |
issn | 2191-1363 2191-1363 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Wiley Open Access; PubMed Central |
subjects | calcination process Carbon dioxide Clusters Coordination compounds Copper compounds copper hydrides Copper oxides Cupric formate Decarboxylation Decomposition Decomposition reactions Formic acid Hydrides Hydrogen atoms Investigations mass spectrometry Morphology Nitrates Organic chemistry Oxidation Oxygen Quantum chemistry reaction mechanisms Redox reactions Roasting Theory Valence Vapor phases |
title | Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20Copper%20Formate%20Clusters:%20Insight%20into%20Elementary%20Steps%20of%20Calcination%20and%20Carbon%20Dioxide%20Activation&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Pascher,%20Tobias%20F.&rft.date=2019-12&rft.volume=8&rft.issue=12&rft.spage=1453&rft.epage=1459&rft.pages=1453-1459&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.201900282&rft_dat=%3Cproquest_doaj_%3E2331209732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331209732&rft_id=info:pmid/31871848&rfr_iscdi=true |