Loading…

Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation

The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are c...

Full description

Saved in:
Bibliographic Details
Published in:ChemistryOpen (Weinheim) 2019-12, Vol.8 (12), p.1453-1459
Main Authors: Pascher, Tobias F., Ončák, Milan, Linde, Christian, Beyer, Martin K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33
cites cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33
container_end_page 1459
container_issue 12
container_start_page 1453
container_title ChemistryOpen (Weinheim)
container_volume 8
creator Pascher, Tobias F.
Ončák, Milan
Linde, Christian
Beyer, Martin K.
description The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen. Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.
doi_str_mv 10.1002/open.201900282
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2</doaj_id><sourcerecordid>2331209732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXplSOKxIXLLh478QcHpGq7bVeqKBJwthzH3nqVxMF2Wvrv8e6WpeWCL56x33k0Y79F8RbQHBDCH_1ohjlGIHLC8YviGIOAGRBKXj6Jj4rTGDcoL1YJqOnr4ogAZ8Arflykc6N9P_rokvND6W258ONoQnnhQ6-SKRfdFJMJ8VO5GqJb36bSDcmXy870ZkgqPJTfkhnjrlJ12g1qB1JDm_PQ5PDc-V-uNeWZTu5ud_umeGVVF83p435S_LhYfl9cza5vLleLs-uZrhngGa-1EFS3ggtFmRCc2tqqtmKIE4prZSk0UFc1wVajBlfAGG0FsVDhBqwm5KRY7bmtVxs5BtfnfqVXTu4OfFhLFZLTnZFWM0yEVQoBqyrgohWALWKYIwWNwpn1ec8ap6Y3rc7DB9U9gz6_GdytXPs7SQVQWosM-PAICP7nZGKSvYvadJ0ajJ-ixIQgQqr8S1n6_h_pxk9hyE-1VQFGgpFtR_O9SgcfYzD20AwgufWH3PpDHvyRC949HeEg_-OGLBB7wb3rzMN_cPLm6_LLX_hv7F3G9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331209732</pqid></control><display><type>article</type><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</creator><creatorcontrib>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</creatorcontrib><description>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n&gt;2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen. Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.201900282</identifier><identifier>PMID: 31871848</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>calcination process ; Carbon dioxide ; Clusters ; Coordination compounds ; Copper compounds ; copper hydrides ; Copper oxides ; Cupric formate ; Decarboxylation ; Decomposition ; Decomposition reactions ; Formic acid ; Hydrides ; Hydrogen atoms ; Investigations ; mass spectrometry ; Morphology ; Nitrates ; Organic chemistry ; Oxidation ; Oxygen ; Quantum chemistry ; reaction mechanisms ; Redox reactions ; Roasting ; Theory ; Valence ; Vapor phases</subject><ispartof>ChemistryOpen (Weinheim), 2019-12, Vol.8 (12), p.1453-1459</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</citedby><cites>FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</cites><orcidid>0000-0001-9373-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331209732/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331209732?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31871848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascher, Tobias F.</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><title>ChemistryOpen (Weinheim)</title><addtitle>ChemistryOpen</addtitle><description>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n&gt;2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen. Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</description><subject>calcination process</subject><subject>Carbon dioxide</subject><subject>Clusters</subject><subject>Coordination compounds</subject><subject>Copper compounds</subject><subject>copper hydrides</subject><subject>Copper oxides</subject><subject>Cupric formate</subject><subject>Decarboxylation</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Formic acid</subject><subject>Hydrides</subject><subject>Hydrogen atoms</subject><subject>Investigations</subject><subject>mass spectrometry</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Quantum chemistry</subject><subject>reaction mechanisms</subject><subject>Redox reactions</subject><subject>Roasting</subject><subject>Theory</subject><subject>Valence</subject><subject>Vapor phases</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXplSOKxIXLLh478QcHpGq7bVeqKBJwthzH3nqVxMF2Wvrv8e6WpeWCL56x33k0Y79F8RbQHBDCH_1ohjlGIHLC8YviGIOAGRBKXj6Jj4rTGDcoL1YJqOnr4ogAZ8Arflykc6N9P_rokvND6W258ONoQnnhQ6-SKRfdFJMJ8VO5GqJb36bSDcmXy870ZkgqPJTfkhnjrlJ12g1qB1JDm_PQ5PDc-V-uNeWZTu5ud_umeGVVF83p435S_LhYfl9cza5vLleLs-uZrhngGa-1EFS3ggtFmRCc2tqqtmKIE4prZSk0UFc1wVajBlfAGG0FsVDhBqwm5KRY7bmtVxs5BtfnfqVXTu4OfFhLFZLTnZFWM0yEVQoBqyrgohWALWKYIwWNwpn1ec8ap6Y3rc7DB9U9gz6_GdytXPs7SQVQWosM-PAICP7nZGKSvYvadJ0ajJ-ixIQgQqr8S1n6_h_pxk9hyE-1VQFGgpFtR_O9SgcfYzD20AwgufWH3PpDHvyRC949HeEg_-OGLBB7wb3rzMN_cPLm6_LLX_hv7F3G9Q</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Pascher, Tobias F.</creator><creator>Ončák, Milan</creator><creator>Linde, Christian</creator><creator>Beyer, Martin K.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9373-9266</orcidid></search><sort><creationdate>201912</creationdate><title>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</title><author>Pascher, Tobias F. ; Ončák, Milan ; Linde, Christian ; Beyer, Martin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>calcination process</topic><topic>Carbon dioxide</topic><topic>Clusters</topic><topic>Coordination compounds</topic><topic>Copper compounds</topic><topic>copper hydrides</topic><topic>Copper oxides</topic><topic>Cupric formate</topic><topic>Decarboxylation</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Formic acid</topic><topic>Hydrides</topic><topic>Hydrogen atoms</topic><topic>Investigations</topic><topic>mass spectrometry</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Quantum chemistry</topic><topic>reaction mechanisms</topic><topic>Redox reactions</topic><topic>Roasting</topic><topic>Theory</topic><topic>Valence</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascher, Tobias F.</creatorcontrib><creatorcontrib>Ončák, Milan</creatorcontrib><creatorcontrib>Linde, Christian</creatorcontrib><creatorcontrib>Beyer, Martin K.</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascher, Tobias F.</au><au>Ončák, Milan</au><au>Linde, Christian</au><au>Beyer, Martin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><addtitle>ChemistryOpen</addtitle><date>2019-12</date><risdate>2019</risdate><volume>8</volume><issue>12</issue><spage>1453</spage><epage>1459</epage><pages>1453-1459</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1−, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n&gt;2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1−, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2− and Cu(II)(HCO2)3−, respectively, is unreactive towards oxygen. Calcination and carbon dioxide activation: Mass spectrometry provides fundamental insight into the complex mechanisms in thermal decomposition of copper formate, with and without the presence of oxygen, which are relevant for the calcination of copper salts and for hydrogen storage applications involving copper hydride‐based catalysts.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31871848</pmid><doi>10.1002/open.201900282</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9373-9266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-1363
ispartof ChemistryOpen (Weinheim), 2019-12, Vol.8 (12), p.1453-1459
issn 2191-1363
2191-1363
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fc7239faa01744189d912f07280a1ba2
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Wiley Open Access; PubMed Central
subjects calcination process
Carbon dioxide
Clusters
Coordination compounds
Copper compounds
copper hydrides
Copper oxides
Cupric formate
Decarboxylation
Decomposition
Decomposition reactions
Formic acid
Hydrides
Hydrogen atoms
Investigations
mass spectrometry
Morphology
Nitrates
Organic chemistry
Oxidation
Oxygen
Quantum chemistry
reaction mechanisms
Redox reactions
Roasting
Theory
Valence
Vapor phases
title Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20Copper%20Formate%20Clusters:%20Insight%20into%20Elementary%20Steps%20of%20Calcination%20and%20Carbon%20Dioxide%20Activation&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Pascher,%20Tobias%20F.&rft.date=2019-12&rft.volume=8&rft.issue=12&rft.spage=1453&rft.epage=1459&rft.pages=1453-1459&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.201900282&rft_dat=%3Cproquest_doaj_%3E2331209732%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5712-85c996cd989a679986f5fad47083625af61b154532fc0b241776d93f142b1fc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331209732&rft_id=info:pmid/31871848&rfr_iscdi=true