Loading…
LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases
Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by c...
Saved in:
Published in: | Plants (Basel) 2024-08, Vol.13 (15), p.2069 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3 |
container_end_page | |
container_issue | 15 |
container_start_page | 2069 |
container_title | Plants (Basel) |
container_volume | 13 |
creator | Wang, Shuyang Li, Qianjun Yang, Tao Li, Zhenghao Bai, Dan Tang, Chenwei Pu, Haibo |
description | Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem. |
doi_str_mv | 10.3390/plants13152069 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515912</galeid><doaj_id>oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b</doaj_id><sourcerecordid>A804515912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</originalsourceid><addsrcrecordid>eNqFkt9rFDEQxxdRbKl99VEWfLEPW_Nrk6xvR--0BwsHngo-hWx2cs1xuzmTrOh_b66t1ZOCSSCT4TNfJl-mKF5idElpg97ud3pMEVNcE8SbJ8UpIYRWQjDx9K_4pDiPcYvykvlg_rw4oQ0mDEtxWnxp1_Pq66pdvSsX440eDfTl4fldjuVst_HBpZuhtD6UC2udcTCmcg4JTHJ-LL0tWxhysJ6C1QbKuYugI8QXxTOrdxHO7--z4vP7xaer66pdfVhezdrKMCZTZQllHTPcMssNMdBwwnTX68ZyIUmDGBCGWJP7NqQmAlMLmtVSWCs7QSTQs2J5p9t7vVX74AYdfiqvnbpN-LBROiRndqCskVRYQTHBHeuM0NxwVGdPtDW8qbus9eZOax_8twliUoOLBnbZZPBTVNlmKhiqufg_irLBsmZEZvT1P-jWT2HMphwo1BBBaf2H2ujcqhutT0Gbg6iaScRqXGfBTF0-QuXdw-CMH8G6nD8quDgqyEyCH2mjpxjVcv3xUXETfIwB7IOdGKnDuKnjccsFr-5_NnUD9A_47-GivwC4Ecpm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090927335</pqid></control><display><type>article</type><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</creator><creatorcontrib>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</creatorcontrib><description>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13152069</identifier><identifier>PMID: 39124187</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; attention mechanisms ; Cash crops ; Citrus ; Citrus fruits ; data collection ; Datasets ; Deep learning ; Disease detection ; Diseases ; Fruits ; Image enhancement ; Image quality ; Image resolution ; lemon disease ; Lemons ; Light levels ; Medical imaging ; Nutritive value ; object detection ; Object recognition ; Plant diseases ; small objects ; supply balance ; Target detection ; YOLOv8</subject><ispartof>Plants (Basel), 2024-08, Vol.13 (15), p.2069</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</cites><orcidid>0000-0002-1749-986X ; 0000-0001-6344-4053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090927335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090927335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuyang</creatorcontrib><creatorcontrib>Li, Qianjun</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Bai, Dan</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Pu, Haibo</creatorcontrib><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>attention mechanisms</subject><subject>Cash crops</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease detection</subject><subject>Diseases</subject><subject>Fruits</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>lemon disease</subject><subject>Lemons</subject><subject>Light levels</subject><subject>Medical imaging</subject><subject>Nutritive value</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Plant diseases</subject><subject>small objects</subject><subject>supply balance</subject><subject>Target detection</subject><subject>YOLOv8</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkt9rFDEQxxdRbKl99VEWfLEPW_Nrk6xvR--0BwsHngo-hWx2cs1xuzmTrOh_b66t1ZOCSSCT4TNfJl-mKF5idElpg97ud3pMEVNcE8SbJ8UpIYRWQjDx9K_4pDiPcYvykvlg_rw4oQ0mDEtxWnxp1_Pq66pdvSsX440eDfTl4fldjuVst_HBpZuhtD6UC2udcTCmcg4JTHJ-LL0tWxhysJ6C1QbKuYugI8QXxTOrdxHO7--z4vP7xaer66pdfVhezdrKMCZTZQllHTPcMssNMdBwwnTX68ZyIUmDGBCGWJP7NqQmAlMLmtVSWCs7QSTQs2J5p9t7vVX74AYdfiqvnbpN-LBROiRndqCskVRYQTHBHeuM0NxwVGdPtDW8qbus9eZOax_8twliUoOLBnbZZPBTVNlmKhiqufg_irLBsmZEZvT1P-jWT2HMphwo1BBBaf2H2ujcqhutT0Gbg6iaScRqXGfBTF0-QuXdw-CMH8G6nD8quDgqyEyCH2mjpxjVcv3xUXETfIwB7IOdGKnDuKnjccsFr-5_NnUD9A_47-GivwC4Ecpm</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Wang, Shuyang</creator><creator>Li, Qianjun</creator><creator>Yang, Tao</creator><creator>Li, Zhenghao</creator><creator>Bai, Dan</creator><creator>Tang, Chenwei</creator><creator>Pu, Haibo</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1749-986X</orcidid><orcidid>https://orcid.org/0000-0001-6344-4053</orcidid></search><sort><creationdate>20240801</creationdate><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><author>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>attention mechanisms</topic><topic>Cash crops</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease detection</topic><topic>Diseases</topic><topic>Fruits</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>lemon disease</topic><topic>Lemons</topic><topic>Light levels</topic><topic>Medical imaging</topic><topic>Nutritive value</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Plant diseases</topic><topic>small objects</topic><topic>supply balance</topic><topic>Target detection</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuyang</creatorcontrib><creatorcontrib>Li, Qianjun</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Bai, Dan</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Pu, Haibo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuyang</au><au>Li, Qianjun</au><au>Yang, Tao</au><au>Li, Zhenghao</au><au>Bai, Dan</au><au>Tang, Chenwei</au><au>Pu, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>2069</spage><pages>2069-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124187</pmid><doi>10.3390/plants13152069</doi><orcidid>https://orcid.org/0000-0002-1749-986X</orcidid><orcidid>https://orcid.org/0000-0001-6344-4053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-7747 |
ispartof | Plants (Basel), 2024-08, Vol.13 (15), p.2069 |
issn | 2223-7747 2223-7747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Algorithms attention mechanisms Cash crops Citrus Citrus fruits data collection Datasets Deep learning Disease detection Diseases Fruits Image enhancement Image quality Image resolution lemon disease Lemons Light levels Medical imaging Nutritive value object detection Object recognition Plant diseases small objects supply balance Target detection YOLOv8 |
title | LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSD-YOLO:%20Enhanced%20YOLOv8n%20Algorithm%20for%20Efficient%20Detection%20of%20Lemon%20Surface%20Diseases&rft.jtitle=Plants%20(Basel)&rft.au=Wang,%20Shuyang&rft.date=2024-08-01&rft.volume=13&rft.issue=15&rft.spage=2069&rft.pages=2069-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13152069&rft_dat=%3Cgale_doaj_%3EA804515912%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090927335&rft_id=info:pmid/39124187&rft_galeid=A804515912&rfr_iscdi=true |