Loading…

LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases

Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by c...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2024-08, Vol.13 (15), p.2069
Main Authors: Wang, Shuyang, Li, Qianjun, Yang, Tao, Li, Zhenghao, Bai, Dan, Tang, Chenwei, Pu, Haibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3
container_end_page
container_issue 15
container_start_page 2069
container_title Plants (Basel)
container_volume 13
creator Wang, Shuyang
Li, Qianjun
Yang, Tao
Li, Zhenghao
Bai, Dan
Tang, Chenwei
Pu, Haibo
description Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.
doi_str_mv 10.3390/plants13152069
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804515912</galeid><doaj_id>oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b</doaj_id><sourcerecordid>A804515912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</originalsourceid><addsrcrecordid>eNqFkt9rFDEQxxdRbKl99VEWfLEPW_Nrk6xvR--0BwsHngo-hWx2cs1xuzmTrOh_b66t1ZOCSSCT4TNfJl-mKF5idElpg97ud3pMEVNcE8SbJ8UpIYRWQjDx9K_4pDiPcYvykvlg_rw4oQ0mDEtxWnxp1_Pq66pdvSsX440eDfTl4fldjuVst_HBpZuhtD6UC2udcTCmcg4JTHJ-LL0tWxhysJ6C1QbKuYugI8QXxTOrdxHO7--z4vP7xaer66pdfVhezdrKMCZTZQllHTPcMssNMdBwwnTX68ZyIUmDGBCGWJP7NqQmAlMLmtVSWCs7QSTQs2J5p9t7vVX74AYdfiqvnbpN-LBROiRndqCskVRYQTHBHeuM0NxwVGdPtDW8qbus9eZOax_8twliUoOLBnbZZPBTVNlmKhiqufg_irLBsmZEZvT1P-jWT2HMphwo1BBBaf2H2ujcqhutT0Gbg6iaScRqXGfBTF0-QuXdw-CMH8G6nD8quDgqyEyCH2mjpxjVcv3xUXETfIwB7IOdGKnDuKnjccsFr-5_NnUD9A_47-GivwC4Ecpm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090927335</pqid></control><display><type>article</type><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</creator><creatorcontrib>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</creatorcontrib><description>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13152069</identifier><identifier>PMID: 39124187</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; attention mechanisms ; Cash crops ; Citrus ; Citrus fruits ; data collection ; Datasets ; Deep learning ; Disease detection ; Diseases ; Fruits ; Image enhancement ; Image quality ; Image resolution ; lemon disease ; Lemons ; Light levels ; Medical imaging ; Nutritive value ; object detection ; Object recognition ; Plant diseases ; small objects ; supply balance ; Target detection ; YOLOv8</subject><ispartof>Plants (Basel), 2024-08, Vol.13 (15), p.2069</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</cites><orcidid>0000-0002-1749-986X ; 0000-0001-6344-4053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090927335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090927335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39124187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuyang</creatorcontrib><creatorcontrib>Li, Qianjun</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Bai, Dan</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Pu, Haibo</creatorcontrib><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>attention mechanisms</subject><subject>Cash crops</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease detection</subject><subject>Diseases</subject><subject>Fruits</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>lemon disease</subject><subject>Lemons</subject><subject>Light levels</subject><subject>Medical imaging</subject><subject>Nutritive value</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Plant diseases</subject><subject>small objects</subject><subject>supply balance</subject><subject>Target detection</subject><subject>YOLOv8</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkt9rFDEQxxdRbKl99VEWfLEPW_Nrk6xvR--0BwsHngo-hWx2cs1xuzmTrOh_b66t1ZOCSSCT4TNfJl-mKF5idElpg97ud3pMEVNcE8SbJ8UpIYRWQjDx9K_4pDiPcYvykvlg_rw4oQ0mDEtxWnxp1_Pq66pdvSsX440eDfTl4fldjuVst_HBpZuhtD6UC2udcTCmcg4JTHJ-LL0tWxhysJ6C1QbKuYugI8QXxTOrdxHO7--z4vP7xaer66pdfVhezdrKMCZTZQllHTPcMssNMdBwwnTX68ZyIUmDGBCGWJP7NqQmAlMLmtVSWCs7QSTQs2J5p9t7vVX74AYdfiqvnbpN-LBROiRndqCskVRYQTHBHeuM0NxwVGdPtDW8qbus9eZOax_8twliUoOLBnbZZPBTVNlmKhiqufg_irLBsmZEZvT1P-jWT2HMphwo1BBBaf2H2ujcqhutT0Gbg6iaScRqXGfBTF0-QuXdw-CMH8G6nD8quDgqyEyCH2mjpxjVcv3xUXETfIwB7IOdGKnDuKnjccsFr-5_NnUD9A_47-GivwC4Ecpm</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Wang, Shuyang</creator><creator>Li, Qianjun</creator><creator>Yang, Tao</creator><creator>Li, Zhenghao</creator><creator>Bai, Dan</creator><creator>Tang, Chenwei</creator><creator>Pu, Haibo</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1749-986X</orcidid><orcidid>https://orcid.org/0000-0001-6344-4053</orcidid></search><sort><creationdate>20240801</creationdate><title>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</title><author>Wang, Shuyang ; Li, Qianjun ; Yang, Tao ; Li, Zhenghao ; Bai, Dan ; Tang, Chenwei ; Pu, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>attention mechanisms</topic><topic>Cash crops</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease detection</topic><topic>Diseases</topic><topic>Fruits</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>lemon disease</topic><topic>Lemons</topic><topic>Light levels</topic><topic>Medical imaging</topic><topic>Nutritive value</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Plant diseases</topic><topic>small objects</topic><topic>supply balance</topic><topic>Target detection</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuyang</creatorcontrib><creatorcontrib>Li, Qianjun</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Zhenghao</creatorcontrib><creatorcontrib>Bai, Dan</creatorcontrib><creatorcontrib>Tang, Chenwei</creatorcontrib><creatorcontrib>Pu, Haibo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuyang</au><au>Li, Qianjun</au><au>Yang, Tao</au><au>Li, Zhenghao</au><au>Bai, Dan</au><au>Tang, Chenwei</au><au>Pu, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>15</issue><spage>2069</spage><pages>2069-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Lemon, as an important cash crop with rich nutritional value, holds significant cultivation importance and market demand worldwide. However, lemon diseases seriously impact the quality and yield of lemons, necessitating their early detection for effective control. This paper addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under varying light levels, growth stages, shooting distances and disease conditions. Through cropping high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons and 718 diseased lemons, with approximately 1-6 targets per image. Then, we propose a novel model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution (SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC and the addition of a small-target detection layer to enhance the extraction of key features and the fusion of features at different scales. The experimental results demonstrate that the proposed LSD-YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50-95 reaching 80.84%. Compared with the original YOLOv8n model, both mAP@50 and mAP@50-95 metrics are enhanced. Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39124187</pmid><doi>10.3390/plants13152069</doi><orcidid>https://orcid.org/0000-0002-1749-986X</orcidid><orcidid>https://orcid.org/0000-0001-6344-4053</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7747
ispartof Plants (Basel), 2024-08, Vol.13 (15), p.2069
issn 2223-7747
2223-7747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fc837f73121b4bc7a6c605080afc695b
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
attention mechanisms
Cash crops
Citrus
Citrus fruits
data collection
Datasets
Deep learning
Disease detection
Diseases
Fruits
Image enhancement
Image quality
Image resolution
lemon disease
Lemons
Light levels
Medical imaging
Nutritive value
object detection
Object recognition
Plant diseases
small objects
supply balance
Target detection
YOLOv8
title LSD-YOLO: Enhanced YOLOv8n Algorithm for Efficient Detection of Lemon Surface Diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSD-YOLO:%20Enhanced%20YOLOv8n%20Algorithm%20for%20Efficient%20Detection%20of%20Lemon%20Surface%20Diseases&rft.jtitle=Plants%20(Basel)&rft.au=Wang,%20Shuyang&rft.date=2024-08-01&rft.volume=13&rft.issue=15&rft.spage=2069&rft.pages=2069-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13152069&rft_dat=%3Cgale_doaj_%3EA804515912%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-f234b4c6f4f6c2ce9624abda9f6782904e24049800c252713fea4587ff8b728e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090927335&rft_id=info:pmid/39124187&rft_galeid=A804515912&rfr_iscdi=true