Loading…
NEPHROBLASTOMA ANALYSIS IN MRI IMAGES
The annotation of the tumour from medical scans is a crucial step in nephroblastoma treatment. Therefore, an accurate and reliable segmentation method is needed to facilitate the evaluation and the treatments of the tumour. The proposed method serves this purpose by performing the segmentation of ne...
Saved in:
Published in: | Image analysis & stereology 2019-01, Vol.38 (2), p.173-183 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 183 |
container_issue | 2 |
container_start_page | 173 |
container_title | Image analysis & stereology |
container_volume | 38 |
creator | Kaba, Djibril McFarlane, Nigel Dong, Feng Graf, Norbert Ye, Xujiong |
description | The annotation of the tumour from medical scans is a crucial step in nephroblastoma treatment. Therefore, an accurate and reliable segmentation method is needed to facilitate the evaluation and the treatments of the tumour. The proposed method serves this purpose by performing the segmentation of nephroblastoma in MRI scans. The segmentation is performed by adapting and a 2D free hand drawing tool to select a region of interest in the scan slices. Results from 24 patients show a mean root-mean-square error of 0.0481 ± 0.0309, an average Dice coefficient of 0.9060 ± 0.0549 and an average accuracy of 99.59% ± 0.0039. Thus the proposed method demonstrated an effective agreement with manual annotations. |
doi_str_mv | 10.5566/ias.2000 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fc89a8d2903d417c865a8ee8807400db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fc89a8d2903d417c865a8ee8807400db</doaj_id><sourcerecordid>oai_doaj_org_article_fc89a8d2903d417c865a8ee8807400db</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-96c02bbdf223b9b13804f2c45a591d656c9792ddf88e642798922b8ca97932203</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFbBR8hGcJN6585P7ixjqW0gaaWpC1fDZCaRlEok6ca3N7Xi6vs4i7M4jN1zmCml9VPrhhkCwAWbcFIyVlyry_ErglhwYa7ZzTDsAaRGpSbsYb14XW03z3la7jZFGqXrNH8vszLK1lGxzaKsSJeL8pZdNe4w1Hd_O2VvL4vdfBXnm2U2T_PYI9ExNtoDVlVoEEVlKi4IZINeKqcMD1ppbxKDITREtZaYGDKIFXk3YoEIYsqyszd0bm-_-vbT9d-2c639BV3_YV1_bP2hto0n4yigAREkTzxp5aiuiSCRAKEaXY9nl--7Yejr5t_HwZ5S2TGVPaUSP7wdVag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NEPHROBLASTOMA ANALYSIS IN MRI IMAGES</title><source>Free Full-Text Journals in Chemistry</source><creator>Kaba, Djibril ; McFarlane, Nigel ; Dong, Feng ; Graf, Norbert ; Ye, Xujiong</creator><creatorcontrib>Kaba, Djibril ; McFarlane, Nigel ; Dong, Feng ; Graf, Norbert ; Ye, Xujiong</creatorcontrib><description>The annotation of the tumour from medical scans is a crucial step in nephroblastoma treatment. Therefore, an accurate and reliable segmentation method is needed to facilitate the evaluation and the treatments of the tumour. The proposed method serves this purpose by performing the segmentation of nephroblastoma in MRI scans. The segmentation is performed by adapting and a 2D free hand drawing tool to select a region of interest in the scan slices. Results from 24 patients show a mean root-mean-square error of 0.0481 ± 0.0309, an average Dice coefficient of 0.9060 ± 0.0549 and an average accuracy of 99.59% ± 0.0039. Thus the proposed method demonstrated an effective agreement with manual annotations.</description><identifier>ISSN: 1580-3139</identifier><identifier>EISSN: 1854-5165</identifier><identifier>DOI: 10.5566/ias.2000</identifier><language>eng</language><publisher>Slovenian Society for Stereology and Quantitative Image Analysis</publisher><subject>Continuous Max-Flow ; Graph Segmentation ; Kernel Induced Space ; MRI images ; Nephroblastoma ; Wilms tumour</subject><ispartof>Image analysis & stereology, 2019-01, Vol.38 (2), p.173-183</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kaba, Djibril</creatorcontrib><creatorcontrib>McFarlane, Nigel</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><creatorcontrib>Graf, Norbert</creatorcontrib><creatorcontrib>Ye, Xujiong</creatorcontrib><title>NEPHROBLASTOMA ANALYSIS IN MRI IMAGES</title><title>Image analysis & stereology</title><description>The annotation of the tumour from medical scans is a crucial step in nephroblastoma treatment. Therefore, an accurate and reliable segmentation method is needed to facilitate the evaluation and the treatments of the tumour. The proposed method serves this purpose by performing the segmentation of nephroblastoma in MRI scans. The segmentation is performed by adapting and a 2D free hand drawing tool to select a region of interest in the scan slices. Results from 24 patients show a mean root-mean-square error of 0.0481 ± 0.0309, an average Dice coefficient of 0.9060 ± 0.0549 and an average accuracy of 99.59% ± 0.0039. Thus the proposed method demonstrated an effective agreement with manual annotations.</description><subject>Continuous Max-Flow</subject><subject>Graph Segmentation</subject><subject>Kernel Induced Space</subject><subject>MRI images</subject><subject>Nephroblastoma</subject><subject>Wilms tumour</subject><issn>1580-3139</issn><issn>1854-5165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kM1Kw0AURgdRsFbBR8hGcJN6585P7ixjqW0gaaWpC1fDZCaRlEok6ca3N7Xi6vs4i7M4jN1zmCml9VPrhhkCwAWbcFIyVlyry_ErglhwYa7ZzTDsAaRGpSbsYb14XW03z3la7jZFGqXrNH8vszLK1lGxzaKsSJeL8pZdNe4w1Hd_O2VvL4vdfBXnm2U2T_PYI9ExNtoDVlVoEEVlKi4IZINeKqcMD1ppbxKDITREtZaYGDKIFXk3YoEIYsqyszd0bm-_-vbT9d-2c639BV3_YV1_bP2hto0n4yigAREkTzxp5aiuiSCRAKEaXY9nl--7Yejr5t_HwZ5S2TGVPaUSP7wdVag</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kaba, Djibril</creator><creator>McFarlane, Nigel</creator><creator>Dong, Feng</creator><creator>Graf, Norbert</creator><creator>Ye, Xujiong</creator><general>Slovenian Society for Stereology and Quantitative Image Analysis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20190101</creationdate><title>NEPHROBLASTOMA ANALYSIS IN MRI IMAGES</title><author>Kaba, Djibril ; McFarlane, Nigel ; Dong, Feng ; Graf, Norbert ; Ye, Xujiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-96c02bbdf223b9b13804f2c45a591d656c9792ddf88e642798922b8ca97932203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Continuous Max-Flow</topic><topic>Graph Segmentation</topic><topic>Kernel Induced Space</topic><topic>MRI images</topic><topic>Nephroblastoma</topic><topic>Wilms tumour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaba, Djibril</creatorcontrib><creatorcontrib>McFarlane, Nigel</creatorcontrib><creatorcontrib>Dong, Feng</creatorcontrib><creatorcontrib>Graf, Norbert</creatorcontrib><creatorcontrib>Ye, Xujiong</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Image analysis & stereology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaba, Djibril</au><au>McFarlane, Nigel</au><au>Dong, Feng</au><au>Graf, Norbert</au><au>Ye, Xujiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEPHROBLASTOMA ANALYSIS IN MRI IMAGES</atitle><jtitle>Image analysis & stereology</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>173</spage><epage>183</epage><pages>173-183</pages><issn>1580-3139</issn><eissn>1854-5165</eissn><abstract>The annotation of the tumour from medical scans is a crucial step in nephroblastoma treatment. Therefore, an accurate and reliable segmentation method is needed to facilitate the evaluation and the treatments of the tumour. The proposed method serves this purpose by performing the segmentation of nephroblastoma in MRI scans. The segmentation is performed by adapting and a 2D free hand drawing tool to select a region of interest in the scan slices. Results from 24 patients show a mean root-mean-square error of 0.0481 ± 0.0309, an average Dice coefficient of 0.9060 ± 0.0549 and an average accuracy of 99.59% ± 0.0039. Thus the proposed method demonstrated an effective agreement with manual annotations.</abstract><pub>Slovenian Society for Stereology and Quantitative Image Analysis</pub><doi>10.5566/ias.2000</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1580-3139 |
ispartof | Image analysis & stereology, 2019-01, Vol.38 (2), p.173-183 |
issn | 1580-3139 1854-5165 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fc89a8d2903d417c865a8ee8807400db |
source | Free Full-Text Journals in Chemistry |
subjects | Continuous Max-Flow Graph Segmentation Kernel Induced Space MRI images Nephroblastoma Wilms tumour |
title | NEPHROBLASTOMA ANALYSIS IN MRI IMAGES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEPHROBLASTOMA%20ANALYSIS%20IN%20MRI%20IMAGES&rft.jtitle=Image%20analysis%20&%20stereology&rft.au=Kaba,%20Djibril&rft.date=2019-01-01&rft.volume=38&rft.issue=2&rft.spage=173&rft.epage=183&rft.pages=173-183&rft.issn=1580-3139&rft.eissn=1854-5165&rft_id=info:doi/10.5566/ias.2000&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fc89a8d2903d417c865a8ee8807400db%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-96c02bbdf223b9b13804f2c45a591d656c9792ddf88e642798922b8ca97932203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |