Loading…
Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production
The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conver...
Saved in:
Published in: | Biofuel research journal 2015-12, Vol.2 (4), p.324-330 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from light into the microalgal biomass did not exceed 5%. The efficiency of the energy transformation from biomass to biological H2 during the dark fermentation stage stood at about 0.3%. The photofermentation stage using the model fermentation effluent could improve this estimation to 11%, resulting in an overall efficiency 0.55%. Evidently, this scheme is counterproductive for light energy bioconversion due to numerous intermediate steps even if the best published data would be taken into account. |
---|---|
ISSN: | 2292-8782 2292-8782 |
DOI: | 10.18331/BRJ2015.2.4.7 |