Loading…

Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling

Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the...

Full description

Saved in:
Bibliographic Details
Published in:Infectious disease modelling 2023-03, Vol.8 (1), p.228-239
Main Authors: Sandie, Arsène Brunelle, Tejiokem, Mathurin Cyrille, Faye, Cheikh Mbacké, Hamadou, Achta, Abah, Aristide Abah, Mbah, Serge Sadeuh, Tagnouokam-Ngoupo, Paul Alain, Njouom, Richard, Eyangoh, Sara, Abanda, Ngu Karl, Diarra, Maryam, Ben Miled, Slimane, Tchuente, Maurice, Tchatchueng-Mbougua, Jules Brice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383
cites cdi_FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383
container_end_page 239
container_issue 1
container_start_page 228
container_title Infectious disease modelling
container_volume 8
creator Sandie, Arsène Brunelle
Tejiokem, Mathurin Cyrille
Faye, Cheikh Mbacké
Hamadou, Achta
Abah, Aristide Abah
Mbah, Serge Sadeuh
Tagnouokam-Ngoupo, Paul Alain
Njouom, Richard
Eyangoh, Sara
Abanda, Ngu Karl
Diarra, Maryam
Ben Miled, Slimane
Tchuente, Maurice
Tchatchueng-Mbougua, Jules Brice
description Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.
doi_str_mv 10.1016/j.idm.2023.02.001
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fca673fcc5c5486c8e5e62b9f50557e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2468042723000088</els_id><doaj_id>oai_doaj_org_article_fca673fcc5c5486c8e5e62b9f50557e3</doaj_id><sourcerecordid>2775951140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1pSUKSH5BN0bIbu3rLbqEQpq-BwGxCt0KWrqcabCmVbEP-fZVMGpJNVxJX535X95yquiK4IZjIj4fGu6mhmLIG0wZj8qY6o1y2NeZUvX1xP60ucz7gomipwoyfVKdMKiUV42eV2_UZ0goOrZDykhHk2U9mLgVj58WMaE4QHIoD2ux-bb_WpEPWZEBhmfrSgXxAGzNBijF8QtfImdnULvkVApqig3H0YX9RvRvMmOHy6Tyvbr9_u938rG92P7ab65vaCqLmmhNlqAPipIO-7YB0duiExGAc7R2RYuBtRwSVjEpuGRuw6LkgjghHDGvZebU9Yl00B32Xyh7pXkfj9WMhpr02afZ2BD1YU_YfrBVW8FbaFgRI2neDwEIoYIX15ci6W_oJnIUwJzO-gr5-Cf633sdVdx0WxfUC-PAESPHPUlzVk8-2-GECxCVrqpToBCEcFyk5Sm2KOScYnscQrB-y1gddstYPWWtMdUmy9Lx_-b_njn_JFsHnowCK4auHpLP1ECw4n8DOxRL_H_xfgfG5nw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775951140</pqid></control><display><type>article</type><title>Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Sandie, Arsène Brunelle ; Tejiokem, Mathurin Cyrille ; Faye, Cheikh Mbacké ; Hamadou, Achta ; Abah, Aristide Abah ; Mbah, Serge Sadeuh ; Tagnouokam-Ngoupo, Paul Alain ; Njouom, Richard ; Eyangoh, Sara ; Abanda, Ngu Karl ; Diarra, Maryam ; Ben Miled, Slimane ; Tchuente, Maurice ; Tchatchueng-Mbougua, Jules Brice</creator><creatorcontrib>Sandie, Arsène Brunelle ; Tejiokem, Mathurin Cyrille ; Faye, Cheikh Mbacké ; Hamadou, Achta ; Abah, Aristide Abah ; Mbah, Serge Sadeuh ; Tagnouokam-Ngoupo, Paul Alain ; Njouom, Richard ; Eyangoh, Sara ; Abanda, Ngu Karl ; Diarra, Maryam ; Ben Miled, Slimane ; Tchuente, Maurice ; Tchatchueng-Mbougua, Jules Brice</creatorcontrib><description>Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.</description><identifier>ISSN: 2468-0427</identifier><identifier>ISSN: 2468-2152</identifier><identifier>EISSN: 2468-0427</identifier><identifier>DOI: 10.1016/j.idm.2023.02.001</identifier><identifier>PMID: 36776734</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Cameroon ; COVID-19 ; Forecasting ; Observed ; Post-stratification ; Underestimated</subject><ispartof>Infectious disease modelling, 2023-03, Vol.8 (1), p.228-239</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383</citedby><cites>FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383</cites><orcidid>0000-0001-5615-3127 ; 0000-0002-7449-5128 ; 0000-0001-9110-4435 ; 0000-0002-0480-1505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905042/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2468042723000088$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36776734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandie, Arsène Brunelle</creatorcontrib><creatorcontrib>Tejiokem, Mathurin Cyrille</creatorcontrib><creatorcontrib>Faye, Cheikh Mbacké</creatorcontrib><creatorcontrib>Hamadou, Achta</creatorcontrib><creatorcontrib>Abah, Aristide Abah</creatorcontrib><creatorcontrib>Mbah, Serge Sadeuh</creatorcontrib><creatorcontrib>Tagnouokam-Ngoupo, Paul Alain</creatorcontrib><creatorcontrib>Njouom, Richard</creatorcontrib><creatorcontrib>Eyangoh, Sara</creatorcontrib><creatorcontrib>Abanda, Ngu Karl</creatorcontrib><creatorcontrib>Diarra, Maryam</creatorcontrib><creatorcontrib>Ben Miled, Slimane</creatorcontrib><creatorcontrib>Tchuente, Maurice</creatorcontrib><creatorcontrib>Tchatchueng-Mbougua, Jules Brice</creatorcontrib><title>Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling</title><title>Infectious disease modelling</title><addtitle>Infect Dis Model</addtitle><description>Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.</description><subject>Cameroon</subject><subject>COVID-19</subject><subject>Forecasting</subject><subject>Observed</subject><subject>Post-stratification</subject><subject>Underestimated</subject><issn>2468-0427</issn><issn>2468-2152</issn><issn>2468-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1pSUKSH5BN0bIbu3rLbqEQpq-BwGxCt0KWrqcabCmVbEP-fZVMGpJNVxJX535X95yquiK4IZjIj4fGu6mhmLIG0wZj8qY6o1y2NeZUvX1xP60ucz7gomipwoyfVKdMKiUV42eV2_UZ0goOrZDykhHk2U9mLgVj58WMaE4QHIoD2ux-bb_WpEPWZEBhmfrSgXxAGzNBijF8QtfImdnULvkVApqig3H0YX9RvRvMmOHy6Tyvbr9_u938rG92P7ab65vaCqLmmhNlqAPipIO-7YB0duiExGAc7R2RYuBtRwSVjEpuGRuw6LkgjghHDGvZebU9Yl00B32Xyh7pXkfj9WMhpr02afZ2BD1YU_YfrBVW8FbaFgRI2neDwEIoYIX15ci6W_oJnIUwJzO-gr5-Cf633sdVdx0WxfUC-PAESPHPUlzVk8-2-GECxCVrqpToBCEcFyk5Sm2KOScYnscQrB-y1gddstYPWWtMdUmy9Lx_-b_njn_JFsHnowCK4auHpLP1ECw4n8DOxRL_H_xfgfG5nw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Sandie, Arsène Brunelle</creator><creator>Tejiokem, Mathurin Cyrille</creator><creator>Faye, Cheikh Mbacké</creator><creator>Hamadou, Achta</creator><creator>Abah, Aristide Abah</creator><creator>Mbah, Serge Sadeuh</creator><creator>Tagnouokam-Ngoupo, Paul Alain</creator><creator>Njouom, Richard</creator><creator>Eyangoh, Sara</creator><creator>Abanda, Ngu Karl</creator><creator>Diarra, Maryam</creator><creator>Ben Miled, Slimane</creator><creator>Tchuente, Maurice</creator><creator>Tchatchueng-Mbougua, Jules Brice</creator><general>Elsevier B.V</general><general>The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd</general><general>KeAi Communications Co., Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5615-3127</orcidid><orcidid>https://orcid.org/0000-0002-7449-5128</orcidid><orcidid>https://orcid.org/0000-0001-9110-4435</orcidid><orcidid>https://orcid.org/0000-0002-0480-1505</orcidid></search><sort><creationdate>20230301</creationdate><title>Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling</title><author>Sandie, Arsène Brunelle ; Tejiokem, Mathurin Cyrille ; Faye, Cheikh Mbacké ; Hamadou, Achta ; Abah, Aristide Abah ; Mbah, Serge Sadeuh ; Tagnouokam-Ngoupo, Paul Alain ; Njouom, Richard ; Eyangoh, Sara ; Abanda, Ngu Karl ; Diarra, Maryam ; Ben Miled, Slimane ; Tchuente, Maurice ; Tchatchueng-Mbougua, Jules Brice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameroon</topic><topic>COVID-19</topic><topic>Forecasting</topic><topic>Observed</topic><topic>Post-stratification</topic><topic>Underestimated</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandie, Arsène Brunelle</creatorcontrib><creatorcontrib>Tejiokem, Mathurin Cyrille</creatorcontrib><creatorcontrib>Faye, Cheikh Mbacké</creatorcontrib><creatorcontrib>Hamadou, Achta</creatorcontrib><creatorcontrib>Abah, Aristide Abah</creatorcontrib><creatorcontrib>Mbah, Serge Sadeuh</creatorcontrib><creatorcontrib>Tagnouokam-Ngoupo, Paul Alain</creatorcontrib><creatorcontrib>Njouom, Richard</creatorcontrib><creatorcontrib>Eyangoh, Sara</creatorcontrib><creatorcontrib>Abanda, Ngu Karl</creatorcontrib><creatorcontrib>Diarra, Maryam</creatorcontrib><creatorcontrib>Ben Miled, Slimane</creatorcontrib><creatorcontrib>Tchuente, Maurice</creatorcontrib><creatorcontrib>Tchatchueng-Mbougua, Jules Brice</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Infectious disease modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandie, Arsène Brunelle</au><au>Tejiokem, Mathurin Cyrille</au><au>Faye, Cheikh Mbacké</au><au>Hamadou, Achta</au><au>Abah, Aristide Abah</au><au>Mbah, Serge Sadeuh</au><au>Tagnouokam-Ngoupo, Paul Alain</au><au>Njouom, Richard</au><au>Eyangoh, Sara</au><au>Abanda, Ngu Karl</au><au>Diarra, Maryam</au><au>Ben Miled, Slimane</au><au>Tchuente, Maurice</au><au>Tchatchueng-Mbougua, Jules Brice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling</atitle><jtitle>Infectious disease modelling</jtitle><addtitle>Infect Dis Model</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>228</spage><epage>239</epage><pages>228-239</pages><issn>2468-0427</issn><issn>2468-2152</issn><eissn>2468-0427</eissn><abstract>Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>36776734</pmid><doi>10.1016/j.idm.2023.02.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5615-3127</orcidid><orcidid>https://orcid.org/0000-0002-7449-5128</orcidid><orcidid>https://orcid.org/0000-0001-9110-4435</orcidid><orcidid>https://orcid.org/0000-0002-0480-1505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2468-0427
ispartof Infectious disease modelling, 2023-03, Vol.8 (1), p.228-239
issn 2468-0427
2468-2152
2468-0427
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fca673fcc5c5486c8e5e62b9f50557e3
source Open Access: PubMed Central; ScienceDirect Journals
subjects Cameroon
COVID-19
Forecasting
Observed
Post-stratification
Underestimated
title Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observed%20versus%20estimated%20actual%20trend%20of%20COVID-19%20case%20numbers%20in%20Cameroon:%20A%20data-driven%20modelling&rft.jtitle=Infectious%20disease%20modelling&rft.au=Sandie,%20Ars%C3%A8ne%20Brunelle&rft.date=2023-03-01&rft.volume=8&rft.issue=1&rft.spage=228&rft.epage=239&rft.pages=228-239&rft.issn=2468-0427&rft.eissn=2468-0427&rft_id=info:doi/10.1016/j.idm.2023.02.001&rft_dat=%3Cproquest_doaj_%3E2775951140%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-417a2de1d6deb89e19cf9560ead2bd165f48915263264c33f05b451d15d1a383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2775951140&rft_id=info:pmid/36776734&rfr_iscdi=true