Loading…

Band conductivity oscillations in a gate-tunable graphene superlattice

Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene m...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-05, Vol.13 (1), p.2856-2856, Article 2856
Main Authors: Huber, Robin, Steffen, Max-Niklas, Drienovsky, Martin, Sandner, Andreas, Watanabe, Kenji, Taniguchi, Takashi, Pfannkuche, Daniela, Weiss, Dieter, Eroms, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713
cites cdi_FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713
container_end_page 2856
container_issue 1
container_start_page 2856
container_title Nature communications
container_volume 13
creator Huber, Robin
Steffen, Max-Niklas
Drienovsky, Martin
Sandner, Andreas
Watanabe, Kenji
Taniguchi, Takashi
Pfannkuche, Daniela
Weiss, Dieter
Eroms, Jonathan
description Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell giving rise to an increase in band conductivity. In this work, we report on the experimental observation of band conductivity oscillations in an electrostatically defined and gate-tunable graphene superlattice, which are governed both by the internal structure of the Hofstadter butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete, unified description of band conductivity oscillations in two-dimensional superlattices, yielding a detailed match between theory and experiment. Experiments in a tunable graphene superlattice show that the unusual 1/B periodic resistance oscillations at high temperatures in the energy spectrum of electrons in a 2D periodic potential, known as the Hofstadter butterfly, coexist with oscillations due to commensurability between the electron cyclotron radius and the superlattice’s period.
doi_str_mv 10.1038/s41467-022-30334-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fcc4e254b5aa4e82ab7f80e553069753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fcc4e254b5aa4e82ab7f80e553069753</doaj_id><sourcerecordid>2667965010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713</originalsourceid><addsrcrecordid>eNp9kUFv3CAQhVHVqom2-QM5VJZ66cUtMIDNpVIbNWmkSL00Z4Tx2GHlhS3YkfLvy8ZJmvRQLiDm8fFmHiGnjH5iFNrPWTChmppyXgMFEDW8IsecClazhsPrZ-cjcpLzlpYFmrVCvCVHIBVVIOUxOf9mQ1-5GPrFzf7Wz3dVzM5Pk519DLnyobLVaGes5yXYbsJqTHZ_gwGrvOwxFd3sHb4jbwY7ZTx52Dfk-vz7r7Mf9dXPi8uzr1e1k4LOdS8ldFZwDYpz5Ap6x1sA2QF0jFoE5oBpLA0pqTpBB6EtcO4apXulGgYbcrly-2i3Zp_8zqY7E6039xcxjcamYmhCMzgnkEvRSWsFttx2zdBSLA6o0o2EwvqysvZLt8PeYZiTnV5AX1aCvzFjvDWa8UJoCuDjAyDF3wvm2ex8dlhmFzAu2XClWk01bw_SD_9It3FJoYzqoGq0krSkuiF8VbkUc044PJlh1BxSN2vqpqRu7lM3hzbeP2_j6cljxkUAqyCXUhgx_f37P9g_-3C2Sw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667965010</pqid></control><display><type>article</type><title>Band conductivity oscillations in a gate-tunable graphene superlattice</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huber, Robin ; Steffen, Max-Niklas ; Drienovsky, Martin ; Sandner, Andreas ; Watanabe, Kenji ; Taniguchi, Takashi ; Pfannkuche, Daniela ; Weiss, Dieter ; Eroms, Jonathan</creator><creatorcontrib>Huber, Robin ; Steffen, Max-Niklas ; Drienovsky, Martin ; Sandner, Andreas ; Watanabe, Kenji ; Taniguchi, Takashi ; Pfannkuche, Daniela ; Weiss, Dieter ; Eroms, Jonathan</creatorcontrib><description>Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell giving rise to an increase in band conductivity. In this work, we report on the experimental observation of band conductivity oscillations in an electrostatically defined and gate-tunable graphene superlattice, which are governed both by the internal structure of the Hofstadter butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete, unified description of band conductivity oscillations in two-dimensional superlattices, yielding a detailed match between theory and experiment. Experiments in a tunable graphene superlattice show that the unusual 1/B periodic resistance oscillations at high temperatures in the energy spectrum of electrons in a 2D periodic potential, known as the Hofstadter butterfly, coexist with oscillations due to commensurability between the electron cyclotron radius and the superlattice’s period.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-30334-3</identifier><identifier>PMID: 35606355</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/544 ; 639/766/119/995 ; 639/925/918/1052 ; Conductivity ; Cyclotrons ; Electrons ; Energy spectra ; Graphene ; Heat resistance ; High temperature ; Humanities and Social Sciences ; Magnetic fields ; Magnetic flux ; multidisciplinary ; Oscillations ; Science ; Science (multidisciplinary) ; Self-similarity ; Superlattices ; Unit cell</subject><ispartof>Nature communications, 2022-05, Vol.13 (1), p.2856-2856, Article 2856</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713</citedby><cites>FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713</cites><orcidid>0000-0002-1467-3105 ; 0000-0003-3701-8119 ; 0000-0003-2212-9537 ; 0000-0002-9630-9787 ; 0000-0002-4581-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2667965010/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2667965010?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35606355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Robin</creatorcontrib><creatorcontrib>Steffen, Max-Niklas</creatorcontrib><creatorcontrib>Drienovsky, Martin</creatorcontrib><creatorcontrib>Sandner, Andreas</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Pfannkuche, Daniela</creatorcontrib><creatorcontrib>Weiss, Dieter</creatorcontrib><creatorcontrib>Eroms, Jonathan</creatorcontrib><title>Band conductivity oscillations in a gate-tunable graphene superlattice</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell giving rise to an increase in band conductivity. In this work, we report on the experimental observation of band conductivity oscillations in an electrostatically defined and gate-tunable graphene superlattice, which are governed both by the internal structure of the Hofstadter butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete, unified description of band conductivity oscillations in two-dimensional superlattices, yielding a detailed match between theory and experiment. Experiments in a tunable graphene superlattice show that the unusual 1/B periodic resistance oscillations at high temperatures in the energy spectrum of electrons in a 2D periodic potential, known as the Hofstadter butterfly, coexist with oscillations due to commensurability between the electron cyclotron radius and the superlattice’s period.</description><subject>639/766/119/544</subject><subject>639/766/119/995</subject><subject>639/925/918/1052</subject><subject>Conductivity</subject><subject>Cyclotrons</subject><subject>Electrons</subject><subject>Energy spectra</subject><subject>Graphene</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>multidisciplinary</subject><subject>Oscillations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-similarity</subject><subject>Superlattices</subject><subject>Unit cell</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFv3CAQhVHVqom2-QM5VJZ66cUtMIDNpVIbNWmkSL00Z4Tx2GHlhS3YkfLvy8ZJmvRQLiDm8fFmHiGnjH5iFNrPWTChmppyXgMFEDW8IsecClazhsPrZ-cjcpLzlpYFmrVCvCVHIBVVIOUxOf9mQ1-5GPrFzf7Wz3dVzM5Pk519DLnyobLVaGes5yXYbsJqTHZ_gwGrvOwxFd3sHb4jbwY7ZTx52Dfk-vz7r7Mf9dXPi8uzr1e1k4LOdS8ldFZwDYpz5Ap6x1sA2QF0jFoE5oBpLA0pqTpBB6EtcO4apXulGgYbcrly-2i3Zp_8zqY7E6039xcxjcamYmhCMzgnkEvRSWsFttx2zdBSLA6o0o2EwvqysvZLt8PeYZiTnV5AX1aCvzFjvDWa8UJoCuDjAyDF3wvm2ex8dlhmFzAu2XClWk01bw_SD_9It3FJoYzqoGq0krSkuiF8VbkUc044PJlh1BxSN2vqpqRu7lM3hzbeP2_j6cljxkUAqyCXUhgx_f37P9g_-3C2Sw</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Huber, Robin</creator><creator>Steffen, Max-Niklas</creator><creator>Drienovsky, Martin</creator><creator>Sandner, Andreas</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Pfannkuche, Daniela</creator><creator>Weiss, Dieter</creator><creator>Eroms, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-2212-9537</orcidid><orcidid>https://orcid.org/0000-0002-9630-9787</orcidid><orcidid>https://orcid.org/0000-0002-4581-0627</orcidid></search><sort><creationdate>20220523</creationdate><title>Band conductivity oscillations in a gate-tunable graphene superlattice</title><author>Huber, Robin ; Steffen, Max-Niklas ; Drienovsky, Martin ; Sandner, Andreas ; Watanabe, Kenji ; Taniguchi, Takashi ; Pfannkuche, Daniela ; Weiss, Dieter ; Eroms, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/544</topic><topic>639/766/119/995</topic><topic>639/925/918/1052</topic><topic>Conductivity</topic><topic>Cyclotrons</topic><topic>Electrons</topic><topic>Energy spectra</topic><topic>Graphene</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>multidisciplinary</topic><topic>Oscillations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-similarity</topic><topic>Superlattices</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Robin</creatorcontrib><creatorcontrib>Steffen, Max-Niklas</creatorcontrib><creatorcontrib>Drienovsky, Martin</creatorcontrib><creatorcontrib>Sandner, Andreas</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Pfannkuche, Daniela</creatorcontrib><creatorcontrib>Weiss, Dieter</creatorcontrib><creatorcontrib>Eroms, Jonathan</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Robin</au><au>Steffen, Max-Niklas</au><au>Drienovsky, Martin</au><au>Sandner, Andreas</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Pfannkuche, Daniela</au><au>Weiss, Dieter</au><au>Eroms, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band conductivity oscillations in a gate-tunable graphene superlattice</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>2856</spage><epage>2856</epage><pages>2856-2856</pages><artnum>2856</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter butterfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell giving rise to an increase in band conductivity. In this work, we report on the experimental observation of band conductivity oscillations in an electrostatically defined and gate-tunable graphene superlattice, which are governed both by the internal structure of the Hofstadter butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete, unified description of band conductivity oscillations in two-dimensional superlattices, yielding a detailed match between theory and experiment. Experiments in a tunable graphene superlattice show that the unusual 1/B periodic resistance oscillations at high temperatures in the energy spectrum of electrons in a 2D periodic potential, known as the Hofstadter butterfly, coexist with oscillations due to commensurability between the electron cyclotron radius and the superlattice’s period.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35606355</pmid><doi>10.1038/s41467-022-30334-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-2212-9537</orcidid><orcidid>https://orcid.org/0000-0002-9630-9787</orcidid><orcidid>https://orcid.org/0000-0002-4581-0627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-05, Vol.13 (1), p.2856-2856, Article 2856
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fcc4e254b5aa4e82ab7f80e553069753
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766/119/544
639/766/119/995
639/925/918/1052
Conductivity
Cyclotrons
Electrons
Energy spectra
Graphene
Heat resistance
High temperature
Humanities and Social Sciences
Magnetic fields
Magnetic flux
multidisciplinary
Oscillations
Science
Science (multidisciplinary)
Self-similarity
Superlattices
Unit cell
title Band conductivity oscillations in a gate-tunable graphene superlattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20conductivity%20oscillations%20in%20a%20gate-tunable%20graphene%20superlattice&rft.jtitle=Nature%20communications&rft.au=Huber,%20Robin&rft.date=2022-05-23&rft.volume=13&rft.issue=1&rft.spage=2856&rft.epage=2856&rft.pages=2856-2856&rft.artnum=2856&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-30334-3&rft_dat=%3Cproquest_doaj_%3E2667965010%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-d553ba4293622e263dc28335b33b10ae31c319e303656b40f49a322c769d66713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2667965010&rft_id=info:pmid/35606355&rfr_iscdi=true