Loading…
Synthesis and characterization of DGEBA composites reinforced with Cu/Ag modified carbon nanotubes
Carbon nanotubes (CNTs) are among the strongest and stiffest contender to be used as filler to elevate the properties of epoxy. The aim of this research work is to evaluate the structural, thermal, and morphological properties of multiwalled carbon nanotubes (MWCNTs) hybridized with silver, copper a...
Saved in:
Published in: | Heliyon 2019-05, Vol.5 (5), p.e01733-e01733, Article e01733 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon nanotubes (CNTs) are among the strongest and stiffest contender to be used as filler to elevate the properties of epoxy. The aim of this research work is to evaluate the structural, thermal, and morphological properties of multiwalled carbon nanotubes (MWCNTs) hybridized with silver, copper and silver/copper nanoparticles (Ag/CuNP) obtained via chemical reduction of aqueous salts assisted with sodium dodecyl sulphate (SDS) as stabilizing agent. The MWCNTs/NP was further incorporated in DGEBA (epoxy) using ethyl cellulose as hardener. Scanning electron microscopy (SEM) reveals micro structural analysis of the MWCNTs/NP hybrids. The Fourier transform infrared (FTIR) spectra prove the interactions between the NP and MWCNTs. Thermogravimetric analysis (TGA) shows that the MWCNTs/NP hybrids decompose at a much faster rate and the weight loss decreased considerably due to the presence of NP. X-ray diffraction (XRD) confirms the formation of NP on the surface of MWCNTs and X-ray photoelectron spectroscopy (XPS) confirms the full covering of MWCNTs/NP hybrids with DGEBA. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2019.e01733 |