Loading…

Deep learning to estimate lithium-ion battery state of health without additional degradation experiments

State of health is a critical state which evaluates the degradation level of batteries. However, it cannot be measured directly but requires estimation. While accurate state of health estimation has progressed markedly, the time- and resource-consuming degradation experiments to generate target batt...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-05, Vol.14 (1), p.2760-2760, Article 2760
Main Authors: Lu, Jiahuan, Xiong, Rui, Tian, Jinpeng, Wang, Chenxu, Sun, Fengchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343
cites cdi_FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343
container_end_page 2760
container_issue 1
container_start_page 2760
container_title Nature communications
container_volume 14
creator Lu, Jiahuan
Xiong, Rui
Tian, Jinpeng
Wang, Chenxu
Sun, Fengchun
description State of health is a critical state which evaluates the degradation level of batteries. However, it cannot be measured directly but requires estimation. While accurate state of health estimation has progressed markedly, the time- and resource-consuming degradation experiments to generate target battery labels hinder the development of state of health estimation methods. In this article, we design a deep-learning framework to enable the estimation of battery state of health in the absence of target battery labels. This framework integrates a swarm of deep neural networks equipped with domain adaptation to produce accurate estimation. We employ 65 commercial batteries from 5 different manufacturers to generate 71,588 samples for cross-validation. The validation results indicate that the proposed framework can ensure absolute errors of less than 3% for 89.4% of samples (less than 5% for 98.9% of samples), with a maximum absolute error of less than 8.87% in the absence of target labels. This work emphasizes the power of deep learning in precluding degradation experiments and highlights the promise of rapid development of battery management algorithms for new-generation batteries using only previous experimental data. Estimation of Li-ion battery state of health is crucial but requires time- and resource-consuming degradation tests for development. Here, authors propose a deep-learning method that enables accurate estimations without additional tests, ensuring absolute errors of less than 3% for 89.4% of samples.
doi_str_mv 10.1038/s41467-023-38458-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fcd96f3559594f169fa425c5f20815f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fcd96f3559594f169fa425c5f20815f9</doaj_id><sourcerecordid>2813563059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkmJn7MQ5IVSgVKrEBc6WY0-yXmXjxXbY9t_jbEppOeCLP-aZd2astyheM3rBKMj3kTNeNyWtoATJhSwPz4rTinJWsqaC54_OJ8V5jFuaF7RMcv6yOIGGNS1n7LTYfELckxF1mNw0kOQJxuR2OiEZXdq4eVc6P5FOp4ThjsS0RHxPNqjHtCGHzPg5EW2tSxnUI7E4BG31ciN4u8fgdjil-Kp40esx4vn9flb8-PL5--XX8ubb1fXlx5vSCM5Siaw2EtEyXSEwU1uoeWcss9jKrqklNAYam9GGGwDdUV5BZ41oelqzDjicFderrvV6q_a5ug53ymunjg8-DEqH5MyIqje2rXsQohUt71nd9ppXwoi-opKJvs1aH1at_dzt0Jo8R9DjE9Gnkclt1OB_KUaZBFot3by7Vwj-55y_Vu1cNDiOekI_R1VJBqIGKpZib_9Bt34O-UdXikqA43jVSpngYwzYP3TDqFqMoVZjqGwMdTSGOuSkN4_neEj5Y4MMwArEHJoGDH9r_0f2N499xZo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813083334</pqid></control><display><type>article</type><title>Deep learning to estimate lithium-ion battery state of health without additional degradation experiments</title><source>Access via ProQuest (Open Access)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lu, Jiahuan ; Xiong, Rui ; Tian, Jinpeng ; Wang, Chenxu ; Sun, Fengchun</creator><creatorcontrib>Lu, Jiahuan ; Xiong, Rui ; Tian, Jinpeng ; Wang, Chenxu ; Sun, Fengchun</creatorcontrib><description>State of health is a critical state which evaluates the degradation level of batteries. However, it cannot be measured directly but requires estimation. While accurate state of health estimation has progressed markedly, the time- and resource-consuming degradation experiments to generate target battery labels hinder the development of state of health estimation methods. In this article, we design a deep-learning framework to enable the estimation of battery state of health in the absence of target battery labels. This framework integrates a swarm of deep neural networks equipped with domain adaptation to produce accurate estimation. We employ 65 commercial batteries from 5 different manufacturers to generate 71,588 samples for cross-validation. The validation results indicate that the proposed framework can ensure absolute errors of less than 3% for 89.4% of samples (less than 5% for 98.9% of samples), with a maximum absolute error of less than 8.87% in the absence of target labels. This work emphasizes the power of deep learning in precluding degradation experiments and highlights the promise of rapid development of battery management algorithms for new-generation batteries using only previous experimental data. Estimation of Li-ion battery state of health is crucial but requires time- and resource-consuming degradation tests for development. Here, authors propose a deep-learning method that enables accurate estimations without additional tests, ensuring absolute errors of less than 3% for 89.4% of samples.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-38458-w</identifier><identifier>PMID: 37179411</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/4077/2790 ; 639/4077/4079/891 ; Algorithms ; Artificial neural networks ; Deep learning ; Degradation ; Errors ; Humanities and Social Sciences ; Labels ; Lithium ; Lithium-ion batteries ; Machine learning ; multidisciplinary ; Neural networks ; Power management ; Rechargeable batteries ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2023-05, Vol.14 (1), p.2760-2760, Article 2760</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343</citedby><cites>FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343</cites><orcidid>0000-0003-4608-7597 ; 0000-0002-2816-327X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2813083334/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2813083334?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37179411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Jiahuan</creatorcontrib><creatorcontrib>Xiong, Rui</creatorcontrib><creatorcontrib>Tian, Jinpeng</creatorcontrib><creatorcontrib>Wang, Chenxu</creatorcontrib><creatorcontrib>Sun, Fengchun</creatorcontrib><title>Deep learning to estimate lithium-ion battery state of health without additional degradation experiments</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>State of health is a critical state which evaluates the degradation level of batteries. However, it cannot be measured directly but requires estimation. While accurate state of health estimation has progressed markedly, the time- and resource-consuming degradation experiments to generate target battery labels hinder the development of state of health estimation methods. In this article, we design a deep-learning framework to enable the estimation of battery state of health in the absence of target battery labels. This framework integrates a swarm of deep neural networks equipped with domain adaptation to produce accurate estimation. We employ 65 commercial batteries from 5 different manufacturers to generate 71,588 samples for cross-validation. The validation results indicate that the proposed framework can ensure absolute errors of less than 3% for 89.4% of samples (less than 5% for 98.9% of samples), with a maximum absolute error of less than 8.87% in the absence of target labels. This work emphasizes the power of deep learning in precluding degradation experiments and highlights the promise of rapid development of battery management algorithms for new-generation batteries using only previous experimental data. Estimation of Li-ion battery state of health is crucial but requires time- and resource-consuming degradation tests for development. Here, authors propose a deep-learning method that enables accurate estimations without additional tests, ensuring absolute errors of less than 3% for 89.4% of samples.</description><subject>639/166/987</subject><subject>639/4077/2790</subject><subject>639/4077/4079/891</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>Errors</subject><subject>Humanities and Social Sciences</subject><subject>Labels</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkmJn7MQ5IVSgVKrEBc6WY0-yXmXjxXbY9t_jbEppOeCLP-aZd2astyheM3rBKMj3kTNeNyWtoATJhSwPz4rTinJWsqaC54_OJ8V5jFuaF7RMcv6yOIGGNS1n7LTYfELckxF1mNw0kOQJxuR2OiEZXdq4eVc6P5FOp4ThjsS0RHxPNqjHtCGHzPg5EW2tSxnUI7E4BG31ciN4u8fgdjil-Kp40esx4vn9flb8-PL5--XX8ubb1fXlx5vSCM5Siaw2EtEyXSEwU1uoeWcss9jKrqklNAYam9GGGwDdUV5BZ41oelqzDjicFderrvV6q_a5ug53ymunjg8-DEqH5MyIqje2rXsQohUt71nd9ppXwoi-opKJvs1aH1at_dzt0Jo8R9DjE9Gnkclt1OB_KUaZBFot3by7Vwj-55y_Vu1cNDiOekI_R1VJBqIGKpZib_9Bt34O-UdXikqA43jVSpngYwzYP3TDqFqMoVZjqGwMdTSGOuSkN4_neEj5Y4MMwArEHJoGDH9r_0f2N499xZo</recordid><startdate>20230513</startdate><enddate>20230513</enddate><creator>Lu, Jiahuan</creator><creator>Xiong, Rui</creator><creator>Tian, Jinpeng</creator><creator>Wang, Chenxu</creator><creator>Sun, Fengchun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4608-7597</orcidid><orcidid>https://orcid.org/0000-0002-2816-327X</orcidid></search><sort><creationdate>20230513</creationdate><title>Deep learning to estimate lithium-ion battery state of health without additional degradation experiments</title><author>Lu, Jiahuan ; Xiong, Rui ; Tian, Jinpeng ; Wang, Chenxu ; Sun, Fengchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/4077/2790</topic><topic>639/4077/4079/891</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>Errors</topic><topic>Humanities and Social Sciences</topic><topic>Labels</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiahuan</creatorcontrib><creatorcontrib>Xiong, Rui</creatorcontrib><creatorcontrib>Tian, Jinpeng</creatorcontrib><creatorcontrib>Wang, Chenxu</creatorcontrib><creatorcontrib>Sun, Fengchun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jiahuan</au><au>Xiong, Rui</au><au>Tian, Jinpeng</au><au>Wang, Chenxu</au><au>Sun, Fengchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning to estimate lithium-ion battery state of health without additional degradation experiments</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-05-13</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>2760</spage><epage>2760</epage><pages>2760-2760</pages><artnum>2760</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>State of health is a critical state which evaluates the degradation level of batteries. However, it cannot be measured directly but requires estimation. While accurate state of health estimation has progressed markedly, the time- and resource-consuming degradation experiments to generate target battery labels hinder the development of state of health estimation methods. In this article, we design a deep-learning framework to enable the estimation of battery state of health in the absence of target battery labels. This framework integrates a swarm of deep neural networks equipped with domain adaptation to produce accurate estimation. We employ 65 commercial batteries from 5 different manufacturers to generate 71,588 samples for cross-validation. The validation results indicate that the proposed framework can ensure absolute errors of less than 3% for 89.4% of samples (less than 5% for 98.9% of samples), with a maximum absolute error of less than 8.87% in the absence of target labels. This work emphasizes the power of deep learning in precluding degradation experiments and highlights the promise of rapid development of battery management algorithms for new-generation batteries using only previous experimental data. Estimation of Li-ion battery state of health is crucial but requires time- and resource-consuming degradation tests for development. Here, authors propose a deep-learning method that enables accurate estimations without additional tests, ensuring absolute errors of less than 3% for 89.4% of samples.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37179411</pmid><doi>10.1038/s41467-023-38458-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4608-7597</orcidid><orcidid>https://orcid.org/0000-0002-2816-327X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-05, Vol.14 (1), p.2760-2760, Article 2760
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fcd96f3559594f169fa425c5f20815f9
source Access via ProQuest (Open Access); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/987
639/4077/2790
639/4077/4079/891
Algorithms
Artificial neural networks
Deep learning
Degradation
Errors
Humanities and Social Sciences
Labels
Lithium
Lithium-ion batteries
Machine learning
multidisciplinary
Neural networks
Power management
Rechargeable batteries
Science
Science (multidisciplinary)
title Deep learning to estimate lithium-ion battery state of health without additional degradation experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20to%20estimate%20lithium-ion%20battery%20state%20of%20health%20without%20additional%20degradation%20experiments&rft.jtitle=Nature%20communications&rft.au=Lu,%20Jiahuan&rft.date=2023-05-13&rft.volume=14&rft.issue=1&rft.spage=2760&rft.epage=2760&rft.pages=2760-2760&rft.artnum=2760&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-38458-w&rft_dat=%3Cproquest_doaj_%3E2813563059%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-e16c8eed1a2e31c6d364bcd1de98b76837c37d54174c33ab0423bdc57f061b343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2813083334&rft_id=info:pmid/37179411&rfr_iscdi=true