Loading…

Study on Numerical Simulation of Large-Diameter Borehole Pressure Relief in Deep High-Gas Soft Coal Seams

The deep highly gassy soft coal seam has the characteristics of high ground stress, high gas pressure, and low permeability. In the process of coal roadway excavation, there are problems such as frequent gas concentration exceeding the limit and easy induction of gas dynamic disasters. To investigat...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2024-06, Vol.9 (23), p.24864-24879
Main Authors: Yang, Zhenhua, Liu, Xiaoshuai, Fan, Chaojun, Li, Sheng, Wang, Xuezeng, Liu, Longkang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deep highly gassy soft coal seam has the characteristics of high ground stress, high gas pressure, and low permeability. In the process of coal roadway excavation, there are problems such as frequent gas concentration exceeding the limit and easy induction of gas dynamic disasters. To investigate the pressure relief and disaster reduction efficiency of large-diameter boreholes in a deep high-gas soft coal seam, the 8002 high-gas working face of the Wuyang coal mine was taken as the engineering background to study the deformation law of large-diameter boreholes in deep high-gas soft coal seams. A coupled damage–stress–seepage model for pressure relief of large-diameter boreholes in gas-bearing coal seams was constructed based on the Hoek–Brown criterion, the correlation between the damage area and the gas pressure distribution in the gas-bearing coal seam after the pressure relief of boreholes of different apertures was analyzed, and the pressure relief efficiency of different technical parameters “three flower holes” in the roadway head was determined. The law of stress transfer, gas migration, and energy release in the coal seam after pressure relief of a large-diameter borehole under different initial gas pressures was revealed, and the power function equations of the damage range and borehole diameter, maximum stress at the roadway head, and driving distance after pressure relief of a gas-bearing coal seam were determined. Results showed that under the confining pressure of the 8002 working face roadway in the Wuyang coal mine, the pressure relief effect of 250 mm aperture is better, the drilling plastic zone is “butterfly” or “X″-type distribution, and the plastic zone range is positively correlated with the aperture size. Under the arrangement of “three flower holes”, the plastic zone is larger and the pressure relief effect is better when the hole spacing is 1.4 m. With the increase of initial gas pressure, the vertical stress above the borehole increases and the pressure relief efficiency decreases. According to the vertical stress distribution within 200 h of borehole pressure relief, the pressure relief process is divided into a coal damage and failure stage, stress balance stage, and hole collapse stability stage. The research results provide a theoretical basis for the prevention and control of coal rock gas dynamic disasters by large-diameter drilling in a deep high-gas soft coal seam.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c01684