Loading…
Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning
Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain...
Saved in:
Published in: | Viruses 2024-03, Vol.16 (3), p.477 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3 |
container_end_page | |
container_issue | 3 |
container_start_page | 477 |
container_title | Viruses |
container_volume | 16 |
creator | Liu, Yiheng He, Zitong Jia, Liyiyang Xue, Yiwei Du, Yuxuan Tan, Huiwen Zhang, Xianzhi Ji, Yu Tong, Yigang Xu, Haijun Liu, Luo |
description | Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development. |
doi_str_mv | 10.3390/v16030477 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788255272</galeid><doaj_id>oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a</doaj_id><sourcerecordid>A788255272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</originalsourceid><addsrcrecordid>eNptkkuP0zAUhSMEYh6w4A-gSGyYRQYnfq9QKcMwUnmoBbaW41y3LqldnKRS_z1uO5QpQl7YOvf4s-_RzbIXJbrGWKI3m5IhjAjnj7LzUkpZEFnSxw_OZ9lF1y0RYkwi_jQ7w4ISLEh5ni2_Rmic6Z2f5591P0Td5jeb0A69Cz53Pu8XkE_fvc-nMN8pwe6V2dr9hPy23ZqwjqEHt6_MRtNZMQ4_iiqvt_knbRbOQz4BHX3iP8ueWN128Px-v8y-f7j5Nv5YTL7c3o1Hk8IQyfuipiUFDpynzzJbIlQTLSwwIixmDVRU6FpL0hhZc2EbVhmDgDNLqaioYQ2-zO4O3CbopVpHt9Jxq4J2ai-EOFc69s60oKyxqNK1FZhiIhnWvEJIImRYbS1jOrHeHljroV5BY8D3KaET6GnFu4Wah40qkeQk5Z0Ir-8JMfwaoOvVynUG2lZ7CEOnMCoJQhWVNFlf_WNdhiH6lFVyISw44Uz8dc116sB5G9LDZgdVIy5SBrTiVXJd_8eVVgMrZ4IH65J-cuHqcMHE0HUR7LHJEqndlKnjlCXvy4epHJ1_xgr_BoKeybA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003874768</pqid></control><display><type>article</type><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</creator><creatorcontrib>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</creatorcontrib><description>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</description><identifier>ISSN: 1999-4915</identifier><identifier>EISSN: 1999-4915</identifier><identifier>DOI: 10.3390/v16030477</identifier><identifier>PMID: 38543841</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; COVID-19 ; COVID-19 vaccines ; Directed evolution ; Disease transmission ; Drug resistance ; Engineering ; Enzymes ; Evolution ; Fourier transforms ; Genetic aspects ; Glycoproteins ; Humans ; Learning algorithms ; Machine Learning ; Medical research ; Microbial mutation ; Molecular dynamics ; Monoclonal antibodies ; Mutation ; Prospective Studies ; Protein Binding ; Protein folding ; Proteins ; SARS-CoV-2 - genetics ; SARS-CoV-2 RBD ; Severe acute respiratory syndrome coronavirus 2 ; Software ; Spike glycoprotein ; Spike Glycoprotein, Coronavirus - genetics ; Structure ; Thermodynamics ; timestamping algorithm ; Vaccine development ; Vaccines ; Virus research</subject><ispartof>Viruses, 2024-03, Vol.16 (3), p.477</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</cites><orcidid>0000-0002-3542-8213 ; 0009-0007-7077-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003874768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003874768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38543841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>He, Zitong</creatorcontrib><creatorcontrib>Jia, Liyiyang</creatorcontrib><creatorcontrib>Xue, Yiwei</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Tan, Huiwen</creatorcontrib><creatorcontrib>Zhang, Xianzhi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Tong, Yigang</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Liu, Luo</creatorcontrib><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><title>Viruses</title><addtitle>Viruses</addtitle><description>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</description><subject>Amino acids</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Directed evolution</subject><subject>Disease transmission</subject><subject>Drug resistance</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Fourier transforms</subject><subject>Genetic aspects</subject><subject>Glycoproteins</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical research</subject><subject>Microbial mutation</subject><subject>Molecular dynamics</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Prospective Studies</subject><subject>Protein Binding</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 RBD</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Software</subject><subject>Spike glycoprotein</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Structure</subject><subject>Thermodynamics</subject><subject>timestamping algorithm</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Virus research</subject><issn>1999-4915</issn><issn>1999-4915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuP0zAUhSMEYh6w4A-gSGyYRQYnfq9QKcMwUnmoBbaW41y3LqldnKRS_z1uO5QpQl7YOvf4s-_RzbIXJbrGWKI3m5IhjAjnj7LzUkpZEFnSxw_OZ9lF1y0RYkwi_jQ7w4ISLEh5ni2_Rmic6Z2f5591P0Td5jeb0A69Cz53Pu8XkE_fvc-nMN8pwe6V2dr9hPy23ZqwjqEHt6_MRtNZMQ4_iiqvt_knbRbOQz4BHX3iP8ueWN128Px-v8y-f7j5Nv5YTL7c3o1Hk8IQyfuipiUFDpynzzJbIlQTLSwwIixmDVRU6FpL0hhZc2EbVhmDgDNLqaioYQ2-zO4O3CbopVpHt9Jxq4J2ai-EOFc69s60oKyxqNK1FZhiIhnWvEJIImRYbS1jOrHeHljroV5BY8D3KaET6GnFu4Wah40qkeQk5Z0Ir-8JMfwaoOvVynUG2lZ7CEOnMCoJQhWVNFlf_WNdhiH6lFVyISw44Uz8dc116sB5G9LDZgdVIy5SBrTiVXJd_8eVVgMrZ4IH65J-cuHqcMHE0HUR7LHJEqndlKnjlCXvy4epHJ1_xgr_BoKeybA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Yiheng</creator><creator>He, Zitong</creator><creator>Jia, Liyiyang</creator><creator>Xue, Yiwei</creator><creator>Du, Yuxuan</creator><creator>Tan, Huiwen</creator><creator>Zhang, Xianzhi</creator><creator>Ji, Yu</creator><creator>Tong, Yigang</creator><creator>Xu, Haijun</creator><creator>Liu, Luo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3542-8213</orcidid><orcidid>https://orcid.org/0009-0007-7077-3796</orcidid></search><sort><creationdate>20240301</creationdate><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><author>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Directed evolution</topic><topic>Disease transmission</topic><topic>Drug resistance</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Fourier transforms</topic><topic>Genetic aspects</topic><topic>Glycoproteins</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical research</topic><topic>Microbial mutation</topic><topic>Molecular dynamics</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Prospective Studies</topic><topic>Protein Binding</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 RBD</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Software</topic><topic>Spike glycoprotein</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Structure</topic><topic>Thermodynamics</topic><topic>timestamping algorithm</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Virus research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>He, Zitong</creatorcontrib><creatorcontrib>Jia, Liyiyang</creatorcontrib><creatorcontrib>Xue, Yiwei</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Tan, Huiwen</creatorcontrib><creatorcontrib>Zhang, Xianzhi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Tong, Yigang</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Liu, Luo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Viruses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yiheng</au><au>He, Zitong</au><au>Jia, Liyiyang</au><au>Xue, Yiwei</au><au>Du, Yuxuan</au><au>Tan, Huiwen</au><au>Zhang, Xianzhi</au><au>Ji, Yu</au><au>Tong, Yigang</au><au>Xu, Haijun</au><au>Liu, Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</atitle><jtitle>Viruses</jtitle><addtitle>Viruses</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>477</spage><pages>477-</pages><issn>1999-4915</issn><eissn>1999-4915</eissn><abstract>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38543841</pmid><doi>10.3390/v16030477</doi><orcidid>https://orcid.org/0000-0002-3542-8213</orcidid><orcidid>https://orcid.org/0009-0007-7077-3796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4915 |
ispartof | Viruses, 2024-03, Vol.16 (3), p.477 |
issn | 1999-4915 1999-4915 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a |
source | PubMed Central(OpenAccess); Publicly Available Content (ProQuest) |
subjects | Amino acids COVID-19 COVID-19 vaccines Directed evolution Disease transmission Drug resistance Engineering Enzymes Evolution Fourier transforms Genetic aspects Glycoproteins Humans Learning algorithms Machine Learning Medical research Microbial mutation Molecular dynamics Monoclonal antibodies Mutation Prospective Studies Protein Binding Protein folding Proteins SARS-CoV-2 - genetics SARS-CoV-2 RBD Severe acute respiratory syndrome coronavirus 2 Software Spike glycoprotein Spike Glycoprotein, Coronavirus - genetics Structure Thermodynamics timestamping algorithm Vaccine development Vaccines Virus research |
title | Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Natural%20Evolution%20in%20the%20RBD%20Region%20of%20the%20Spike%20Glycoprotein%20of%20SARS-CoV-2%20by%20Machine%20Learning&rft.jtitle=Viruses&rft.au=Liu,%20Yiheng&rft.date=2024-03-01&rft.volume=16&rft.issue=3&rft.spage=477&rft.pages=477-&rft.issn=1999-4915&rft.eissn=1999-4915&rft_id=info:doi/10.3390/v16030477&rft_dat=%3Cgale_doaj_%3EA788255272%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003874768&rft_id=info:pmid/38543841&rft_galeid=A788255272&rfr_iscdi=true |