Loading…

Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning

Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain...

Full description

Saved in:
Bibliographic Details
Published in:Viruses 2024-03, Vol.16 (3), p.477
Main Authors: Liu, Yiheng, He, Zitong, Jia, Liyiyang, Xue, Yiwei, Du, Yuxuan, Tan, Huiwen, Zhang, Xianzhi, Ji, Yu, Tong, Yigang, Xu, Haijun, Liu, Luo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3
container_end_page
container_issue 3
container_start_page 477
container_title Viruses
container_volume 16
creator Liu, Yiheng
He, Zitong
Jia, Liyiyang
Xue, Yiwei
Du, Yuxuan
Tan, Huiwen
Zhang, Xianzhi
Ji, Yu
Tong, Yigang
Xu, Haijun
Liu, Luo
description Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.
doi_str_mv 10.3390/v16030477
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788255272</galeid><doaj_id>oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a</doaj_id><sourcerecordid>A788255272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</originalsourceid><addsrcrecordid>eNptkkuP0zAUhSMEYh6w4A-gSGyYRQYnfq9QKcMwUnmoBbaW41y3LqldnKRS_z1uO5QpQl7YOvf4s-_RzbIXJbrGWKI3m5IhjAjnj7LzUkpZEFnSxw_OZ9lF1y0RYkwi_jQ7w4ISLEh5ni2_Rmic6Z2f5591P0Td5jeb0A69Cz53Pu8XkE_fvc-nMN8pwe6V2dr9hPy23ZqwjqEHt6_MRtNZMQ4_iiqvt_knbRbOQz4BHX3iP8ueWN128Px-v8y-f7j5Nv5YTL7c3o1Hk8IQyfuipiUFDpynzzJbIlQTLSwwIixmDVRU6FpL0hhZc2EbVhmDgDNLqaioYQ2-zO4O3CbopVpHt9Jxq4J2ai-EOFc69s60oKyxqNK1FZhiIhnWvEJIImRYbS1jOrHeHljroV5BY8D3KaET6GnFu4Wah40qkeQk5Z0Ir-8JMfwaoOvVynUG2lZ7CEOnMCoJQhWVNFlf_WNdhiH6lFVyISw44Uz8dc116sB5G9LDZgdVIy5SBrTiVXJd_8eVVgMrZ4IH65J-cuHqcMHE0HUR7LHJEqndlKnjlCXvy4epHJ1_xgr_BoKeybA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003874768</pqid></control><display><type>article</type><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</creator><creatorcontrib>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</creatorcontrib><description>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</description><identifier>ISSN: 1999-4915</identifier><identifier>EISSN: 1999-4915</identifier><identifier>DOI: 10.3390/v16030477</identifier><identifier>PMID: 38543841</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amino acids ; COVID-19 ; COVID-19 vaccines ; Directed evolution ; Disease transmission ; Drug resistance ; Engineering ; Enzymes ; Evolution ; Fourier transforms ; Genetic aspects ; Glycoproteins ; Humans ; Learning algorithms ; Machine Learning ; Medical research ; Microbial mutation ; Molecular dynamics ; Monoclonal antibodies ; Mutation ; Prospective Studies ; Protein Binding ; Protein folding ; Proteins ; SARS-CoV-2 - genetics ; SARS-CoV-2 RBD ; Severe acute respiratory syndrome coronavirus 2 ; Software ; Spike glycoprotein ; Spike Glycoprotein, Coronavirus - genetics ; Structure ; Thermodynamics ; timestamping algorithm ; Vaccine development ; Vaccines ; Virus research</subject><ispartof>Viruses, 2024-03, Vol.16 (3), p.477</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</cites><orcidid>0000-0002-3542-8213 ; 0009-0007-7077-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003874768/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003874768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38543841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>He, Zitong</creatorcontrib><creatorcontrib>Jia, Liyiyang</creatorcontrib><creatorcontrib>Xue, Yiwei</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Tan, Huiwen</creatorcontrib><creatorcontrib>Zhang, Xianzhi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Tong, Yigang</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Liu, Luo</creatorcontrib><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><title>Viruses</title><addtitle>Viruses</addtitle><description>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</description><subject>Amino acids</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Directed evolution</subject><subject>Disease transmission</subject><subject>Drug resistance</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Fourier transforms</subject><subject>Genetic aspects</subject><subject>Glycoproteins</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical research</subject><subject>Microbial mutation</subject><subject>Molecular dynamics</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Prospective Studies</subject><subject>Protein Binding</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 RBD</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Software</subject><subject>Spike glycoprotein</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Structure</subject><subject>Thermodynamics</subject><subject>timestamping algorithm</subject><subject>Vaccine development</subject><subject>Vaccines</subject><subject>Virus research</subject><issn>1999-4915</issn><issn>1999-4915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuP0zAUhSMEYh6w4A-gSGyYRQYnfq9QKcMwUnmoBbaW41y3LqldnKRS_z1uO5QpQl7YOvf4s-_RzbIXJbrGWKI3m5IhjAjnj7LzUkpZEFnSxw_OZ9lF1y0RYkwi_jQ7w4ISLEh5ni2_Rmic6Z2f5591P0Td5jeb0A69Cz53Pu8XkE_fvc-nMN8pwe6V2dr9hPy23ZqwjqEHt6_MRtNZMQ4_iiqvt_knbRbOQz4BHX3iP8ueWN128Px-v8y-f7j5Nv5YTL7c3o1Hk8IQyfuipiUFDpynzzJbIlQTLSwwIixmDVRU6FpL0hhZc2EbVhmDgDNLqaioYQ2-zO4O3CbopVpHt9Jxq4J2ai-EOFc69s60oKyxqNK1FZhiIhnWvEJIImRYbS1jOrHeHljroV5BY8D3KaET6GnFu4Wah40qkeQk5Z0Ir-8JMfwaoOvVynUG2lZ7CEOnMCoJQhWVNFlf_WNdhiH6lFVyISw44Uz8dc116sB5G9LDZgdVIy5SBrTiVXJd_8eVVgMrZ4IH65J-cuHqcMHE0HUR7LHJEqndlKnjlCXvy4epHJ1_xgr_BoKeybA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liu, Yiheng</creator><creator>He, Zitong</creator><creator>Jia, Liyiyang</creator><creator>Xue, Yiwei</creator><creator>Du, Yuxuan</creator><creator>Tan, Huiwen</creator><creator>Zhang, Xianzhi</creator><creator>Ji, Yu</creator><creator>Tong, Yigang</creator><creator>Xu, Haijun</creator><creator>Liu, Luo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3542-8213</orcidid><orcidid>https://orcid.org/0009-0007-7077-3796</orcidid></search><sort><creationdate>20240301</creationdate><title>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</title><author>Liu, Yiheng ; He, Zitong ; Jia, Liyiyang ; Xue, Yiwei ; Du, Yuxuan ; Tan, Huiwen ; Zhang, Xianzhi ; Ji, Yu ; Tong, Yigang ; Xu, Haijun ; Liu, Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Directed evolution</topic><topic>Disease transmission</topic><topic>Drug resistance</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Fourier transforms</topic><topic>Genetic aspects</topic><topic>Glycoproteins</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical research</topic><topic>Microbial mutation</topic><topic>Molecular dynamics</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Prospective Studies</topic><topic>Protein Binding</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 RBD</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Software</topic><topic>Spike glycoprotein</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Structure</topic><topic>Thermodynamics</topic><topic>timestamping algorithm</topic><topic>Vaccine development</topic><topic>Vaccines</topic><topic>Virus research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>He, Zitong</creatorcontrib><creatorcontrib>Jia, Liyiyang</creatorcontrib><creatorcontrib>Xue, Yiwei</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Tan, Huiwen</creatorcontrib><creatorcontrib>Zhang, Xianzhi</creatorcontrib><creatorcontrib>Ji, Yu</creatorcontrib><creatorcontrib>Tong, Yigang</creatorcontrib><creatorcontrib>Xu, Haijun</creatorcontrib><creatorcontrib>Liu, Luo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Viruses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yiheng</au><au>He, Zitong</au><au>Jia, Liyiyang</au><au>Xue, Yiwei</au><au>Du, Yuxuan</au><au>Tan, Huiwen</au><au>Zhang, Xianzhi</au><au>Ji, Yu</au><au>Tong, Yigang</au><au>Xu, Haijun</au><au>Liu, Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning</atitle><jtitle>Viruses</jtitle><addtitle>Viruses</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>477</spage><pages>477-</pages><issn>1999-4915</issn><eissn>1999-4915</eissn><abstract>Machine learning (ML) is a key focus in predicting protein mutations and aiding directed evolution. Research on potential virus variants is crucial for vaccine development. In this study, the machine learning software PyPEF was employed to conduct mutation analysis within the receptor-binding domain (RBD) of the Spike glycoprotein of SARS-CoV-2. Over 48,960,000 variants were predicted. Eight prospective variants that could surface in the future underwent modeling and molecular dynamics simulations. The study forecasts that the latest variant, ISOY2P5O1, may potentially emerge around 17 November 2023, with an approximate window of uncertainty of ±22 days. The ISOY8P5O2 variant displayed an increased binding capacity in the dry assay, with a total predicted binding energy of -110.306 kcal/mol. This represents an 8.25% enhancement in total binding energy compared to the original SARS-CoV-2 strain discovered in Wuhan (-101.892 kcal/mol). Reverse research confirmed the structural significance of mutation sites using ML models, particularly in the context of protein folding. The study validated regression methods (SVR, RF, and PLS) with different data structures. This study investigates the effectiveness of the "ML-Guided Design Correctly Predicts Combinatorial Effects Strategy" compared to the "ML-Guided Design Correctly Predicts Natural Evolution Prediction Strategy". To enhance machine learning, we created a timestamping algorithm and two auxiliary programs using advanced techniques to rapidly process extensive data, surpassing batch sequencing capabilities. This study not only advances machine learning in guiding protein evolution but also holds potential for forecasting future viruses and vaccine development.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38543841</pmid><doi>10.3390/v16030477</doi><orcidid>https://orcid.org/0000-0002-3542-8213</orcidid><orcidid>https://orcid.org/0009-0007-7077-3796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4915
ispartof Viruses, 2024-03, Vol.16 (3), p.477
issn 1999-4915
1999-4915
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fcf02abf83534963a7200900c6bff66a
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest)
subjects Amino acids
COVID-19
COVID-19 vaccines
Directed evolution
Disease transmission
Drug resistance
Engineering
Enzymes
Evolution
Fourier transforms
Genetic aspects
Glycoproteins
Humans
Learning algorithms
Machine Learning
Medical research
Microbial mutation
Molecular dynamics
Monoclonal antibodies
Mutation
Prospective Studies
Protein Binding
Protein folding
Proteins
SARS-CoV-2 - genetics
SARS-CoV-2 RBD
Severe acute respiratory syndrome coronavirus 2
Software
Spike glycoprotein
Spike Glycoprotein, Coronavirus - genetics
Structure
Thermodynamics
timestamping algorithm
Vaccine development
Vaccines
Virus research
title Predicting Natural Evolution in the RBD Region of the Spike Glycoprotein of SARS-CoV-2 by Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Natural%20Evolution%20in%20the%20RBD%20Region%20of%20the%20Spike%20Glycoprotein%20of%20SARS-CoV-2%20by%20Machine%20Learning&rft.jtitle=Viruses&rft.au=Liu,%20Yiheng&rft.date=2024-03-01&rft.volume=16&rft.issue=3&rft.spage=477&rft.pages=477-&rft.issn=1999-4915&rft.eissn=1999-4915&rft_id=info:doi/10.3390/v16030477&rft_dat=%3Cgale_doaj_%3EA788255272%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-b515e7e776696f100b4a8fe648f36de258aba94dc9b78fd62cc0e76f55825c6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003874768&rft_id=info:pmid/38543841&rft_galeid=A788255272&rfr_iscdi=true