Loading…
The Domatic Partition Problem in Separable Graphs
The domatic partition problem consists of partitioning a given graph into a maximum number of disjoint dominating sets. This problem is related with the domatic number problem, which consists of quantifying this maximum number of disjoint dominating sets. Both problems were proved to be NP-complete....
Saved in:
Published in: | Mathematics (Basel) 2022-02, Vol.10 (4), p.640 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53 |
container_end_page | |
container_issue | 4 |
container_start_page | 640 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Landete, Mercedes Sainz-Pardo, José Luis |
description | The domatic partition problem consists of partitioning a given graph into a maximum number of disjoint dominating sets. This problem is related with the domatic number problem, which consists of quantifying this maximum number of disjoint dominating sets. Both problems were proved to be NP-complete. In this paper, we present a decomposition algorithm for finding a domatic partition on separable graphs, that is, on graphs with blocks, and as a consequence, its domatic number, highly reducing the computational complexity. Computational results illustrate the benefits of the block decomposition algorithm. |
doi_str_mv | 10.3390/math10040640 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fcf75cd6bd304081a30a8ba7d1ff72d2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fcf75cd6bd304081a30a8ba7d1ff72d2</doaj_id><sourcerecordid>2633111316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53</originalsourceid><addsrcrecordid>eNpNUE1PwzAMjRBITGM3fkAlrhScJk3SIxowkCYxiXGO3HywTttSku7AvydjCM0XP9vPz08m5JrCHWMN3G9xWFEADoLDGRlVVSVLmQfnJ_iSTFJaQ46GMsWbEaHLlSseQ17uTLHAOHRDF3bFIoZ247ZFtyveXY8Rc1XMIvardEUuPG6Sm_zlMfl4flpOX8r52-x1-jAvDRNyKGuw0qiWemaFYUpxxU2FgjfYWgaNkLKWtlHgROtQmjYjsEZZKpAD-JqNyetR1wZc6z52W4zfOmCnfxshfuqDXbNx2hsva2PFQZmDosgAVYvSUu9lZausdXPU6mP42rs06HXYx122ryvBGKWUUZFZt0eWiSGl6Pz_VQr68GN9-mP2A5-lbRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633111316</pqid></control><display><type>article</type><title>The Domatic Partition Problem in Separable Graphs</title><source>Publicly Available Content Database</source><creator>Landete, Mercedes ; Sainz-Pardo, José Luis</creator><creatorcontrib>Landete, Mercedes ; Sainz-Pardo, José Luis</creatorcontrib><description>The domatic partition problem consists of partitioning a given graph into a maximum number of disjoint dominating sets. This problem is related with the domatic number problem, which consists of quantifying this maximum number of disjoint dominating sets. Both problems were proved to be NP-complete. In this paper, we present a decomposition algorithm for finding a domatic partition on separable graphs, that is, on graphs with blocks, and as a consequence, its domatic number, highly reducing the computational complexity. Computational results illustrate the benefits of the block decomposition algorithm.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10040640</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Decomposition ; decomposition algorithm ; domatic number ; domatic partition ; Food science ; Graphs ; graphs with blocks ; integer linear problem ; Integer programming ; Partitions (mathematics)</subject><ispartof>Mathematics (Basel), 2022-02, Vol.10 (4), p.640</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53</citedby><cites>FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53</cites><orcidid>0000-0002-2663-9967 ; 0000-0002-5201-0476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633111316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633111316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Landete, Mercedes</creatorcontrib><creatorcontrib>Sainz-Pardo, José Luis</creatorcontrib><title>The Domatic Partition Problem in Separable Graphs</title><title>Mathematics (Basel)</title><description>The domatic partition problem consists of partitioning a given graph into a maximum number of disjoint dominating sets. This problem is related with the domatic number problem, which consists of quantifying this maximum number of disjoint dominating sets. Both problems were proved to be NP-complete. In this paper, we present a decomposition algorithm for finding a domatic partition on separable graphs, that is, on graphs with blocks, and as a consequence, its domatic number, highly reducing the computational complexity. Computational results illustrate the benefits of the block decomposition algorithm.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>decomposition algorithm</subject><subject>domatic number</subject><subject>domatic partition</subject><subject>Food science</subject><subject>Graphs</subject><subject>graphs with blocks</subject><subject>integer linear problem</subject><subject>Integer programming</subject><subject>Partitions (mathematics)</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwzAMjRBITGM3fkAlrhScJk3SIxowkCYxiXGO3HywTttSku7AvydjCM0XP9vPz08m5JrCHWMN3G9xWFEADoLDGRlVVSVLmQfnJ_iSTFJaQ46GMsWbEaHLlSseQ17uTLHAOHRDF3bFIoZ247ZFtyveXY8Rc1XMIvardEUuPG6Sm_zlMfl4flpOX8r52-x1-jAvDRNyKGuw0qiWemaFYUpxxU2FgjfYWgaNkLKWtlHgROtQmjYjsEZZKpAD-JqNyetR1wZc6z52W4zfOmCnfxshfuqDXbNx2hsva2PFQZmDosgAVYvSUu9lZausdXPU6mP42rs06HXYx122ryvBGKWUUZFZt0eWiSGl6Pz_VQr68GN9-mP2A5-lbRg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Landete, Mercedes</creator><creator>Sainz-Pardo, José Luis</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2663-9967</orcidid><orcidid>https://orcid.org/0000-0002-5201-0476</orcidid></search><sort><creationdate>20220201</creationdate><title>The Domatic Partition Problem in Separable Graphs</title><author>Landete, Mercedes ; Sainz-Pardo, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>decomposition algorithm</topic><topic>domatic number</topic><topic>domatic partition</topic><topic>Food science</topic><topic>Graphs</topic><topic>graphs with blocks</topic><topic>integer linear problem</topic><topic>Integer programming</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landete, Mercedes</creatorcontrib><creatorcontrib>Sainz-Pardo, José Luis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landete, Mercedes</au><au>Sainz-Pardo, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Domatic Partition Problem in Separable Graphs</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>640</spage><pages>640-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The domatic partition problem consists of partitioning a given graph into a maximum number of disjoint dominating sets. This problem is related with the domatic number problem, which consists of quantifying this maximum number of disjoint dominating sets. Both problems were proved to be NP-complete. In this paper, we present a decomposition algorithm for finding a domatic partition on separable graphs, that is, on graphs with blocks, and as a consequence, its domatic number, highly reducing the computational complexity. Computational results illustrate the benefits of the block decomposition algorithm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10040640</doi><orcidid>https://orcid.org/0000-0002-2663-9967</orcidid><orcidid>https://orcid.org/0000-0002-5201-0476</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-02, Vol.10 (4), p.640 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fcf75cd6bd304081a30a8ba7d1ff72d2 |
source | Publicly Available Content Database |
subjects | Algorithms Decomposition decomposition algorithm domatic number domatic partition Food science Graphs graphs with blocks integer linear problem Integer programming Partitions (mathematics) |
title | The Domatic Partition Problem in Separable Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Domatic%20Partition%20Problem%20in%20Separable%20Graphs&rft.jtitle=Mathematics%20(Basel)&rft.au=Landete,%20Mercedes&rft.date=2022-02-01&rft.volume=10&rft.issue=4&rft.spage=640&rft.pages=640-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10040640&rft_dat=%3Cproquest_doaj_%3E2633111316%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-50d7c8b1f3d6c388484c2a649abd30967757d980e6bea7cb80e0dc8d16a400f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633111316&rft_id=info:pmid/&rfr_iscdi=true |