Loading…

Climate Change and Soil Health: Explainable Artificial Intelligence Reveals Microbiome Response to Warming

Climate change presents an unprecedented global challenge, demanding collective action to both mitigate its effects and adapt to its consequences. Soil health and function are profoundly impacted by climate change, particularly evident in the sensitivity of soil microbial respiration to warming, kno...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning and knowledge extraction 2024-09, Vol.6 (3), p.1564-1578
Main Authors: Novielli, Pierfrancesco, Magarelli, Michele, Romano, Donato, de Trizio, Lorenzo, Di Bitonto, Pierpaolo, Monaco, Alfonso, Amoroso, Nicola, Stellacci, Anna Maria, Zoani, Claudia, Bellotti, Roberto, Tangaro, Sabina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Climate change presents an unprecedented global challenge, demanding collective action to both mitigate its effects and adapt to its consequences. Soil health and function are profoundly impacted by climate change, particularly evident in the sensitivity of soil microbial respiration to warming, known as Q10. Q10 measures the rate of microbial respiration’s increase with a temperature rise of 10 degrees Celsius, playing a pivotal role in understanding soil carbon dynamics in response to climate change. Leveraging machine learning techniques, particularly explainable artificial intelligence (XAI), offers a promising avenue to analyze complex data and identify biomarkers crucial for developing innovative climate change mitigation strategies. This research aims to evaluate the extent to which chemical, physical, and microbiological soil characteristics are associated with high or low Q10 values, utilizing XAI approaches. The Extra Trees Classifier algorithm was employed, yielding an average accuracy of 0.923±0.009, an average AUCROC of 0.964±0.004, and an average AUCPRC of 0.963±0.006. Additionally, through XAI techniques, we elucidate the significant features contributing to the prediction of Q10 classes. The XAI analysis shows that the temperature sensitivity of soil respiration increases with microbiome variables but decreases with non-microbiome variables beyond a threshold. Our findings underscore the critical role of the soil microbiome in predicting soil Q10 dynamics, providing valuable insights for developing targeted climate change mitigation strategies.
ISSN:2504-4990
2504-4990
DOI:10.3390/make6030075