Loading…

Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web

As advances in science and technology, crisis, and increased competition impact labor markets, reskilling and upskilling programs emerged to mitigate their effects. Since information on continuing education is highly distributed across websites, choosing career paths and suitable upskilling options...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2022-11, Vol.13 (11), p.510
Main Authors: Weichselbraun, Albert, Waldvogel, Roger, Fraefel, Andreas, van Schie, Alexander, Kuntschik, Philipp
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3
cites cdi_FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3
container_end_page
container_issue 11
container_start_page 510
container_title Information (Basel)
container_volume 13
creator Weichselbraun, Albert
Waldvogel, Roger
Fraefel, Andreas
van Schie, Alexander
Kuntschik, Philipp
description As advances in science and technology, crisis, and increased competition impact labor markets, reskilling and upskilling programs emerged to mitigate their effects. Since information on continuing education is highly distributed across websites, choosing career paths and suitable upskilling options is currently considered a challenging and cumbersome task. This article, therefore, introduces a method for building a comprehensive knowledge graph from the education providers’ Web pages. We collect educational programs from 488 providers and leverage entity recognition and entity linking methods in conjunction with contextualization to extract knowledge on entities such as prerequisites, skills, learning objectives, and course content. Slot filling then integrates these entities into an extensive knowledge graph that contains close to 74,000 nodes and over 734,000 edges. A recommender system leverages the created graph, and background knowledge on occupations to provide a career path and upskilling suggestions. Finally, we evaluate the knowledge extraction approach on the CareerCoach 2022 gold standard and draw upon domain experts for judging the career paths and upskilling suggestions provided by the recommender system.
doi_str_mv 10.3390/info13110510
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd42b643dc6d4f1fb9da1aa95f67cb78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd42b643dc6d4f1fb9da1aa95f67cb78</doaj_id><sourcerecordid>2734629367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqDd_QMGrq0mnaZKjiq6isOAHHkM-JrVr29Ski_jv7bqyOJd5M8x784bJshNKzgEkuWh6HyhQShglO9lBQbiYFaWQu__wfnac0pJMwbkoBT3IwtWqaV3T1_lDH75adDXm86iH95Tr3uVPaEPXYe8w5s_facQu5T5MeFXXmMY17wnTR9O2a7hmvA7bcjGMTegnQgxdPr5j_obmKNvzuk14_JcPs9fbm5fru9njYn5_ffk4s1DxcQYGmavQgPBOSAfIpLCGAJQOsbKmAOs510wywSwxgBVDzYAxsIx7iXCY3W90XdBLNcSm0_FbBd2o30aItdJxbGyLyruyMFUJzlau9NQb6TTVWjJfcWu4mLRON1pDDJ-r6Wy1DKvYT_ZVwaGsCjl5nqbONlM2hpQi-u1WStT6Q-r_h-AHQuOFyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734629367</pqid></control><display><type>article</type><title>Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web</title><source>Publicly Available Content Database</source><creator>Weichselbraun, Albert ; Waldvogel, Roger ; Fraefel, Andreas ; van Schie, Alexander ; Kuntschik, Philipp</creator><creatorcontrib>Weichselbraun, Albert ; Waldvogel, Roger ; Fraefel, Andreas ; van Schie, Alexander ; Kuntschik, Philipp</creatorcontrib><description>As advances in science and technology, crisis, and increased competition impact labor markets, reskilling and upskilling programs emerged to mitigate their effects. Since information on continuing education is highly distributed across websites, choosing career paths and suitable upskilling options is currently considered a challenging and cumbersome task. This article, therefore, introduces a method for building a comprehensive knowledge graph from the education providers’ Web pages. We collect educational programs from 488 providers and leverage entity recognition and entity linking methods in conjunction with contextualization to extract knowledge on entities such as prerequisites, skills, learning objectives, and course content. Slot filling then integrates these entities into an extensive knowledge graph that contains close to 74,000 nodes and over 734,000 edges. A recommender system leverages the created graph, and background knowledge on occupations to provide a career path and upskilling suggestions. Finally, we evaluate the knowledge extraction approach on the CareerCoach 2022 gold standard and draw upon domain experts for judging the career paths and upskilling suggestions provided by the recommender system.</description><identifier>ISSN: 2078-2489</identifier><identifier>EISSN: 2078-2489</identifier><identifier>DOI: 10.3390/info13110510</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automation ; Careers ; Continuing education ; Datasets ; Deep learning ; Education ; Employees ; entity classification ; entity linking ; entity recognition ; Graph theory ; knowledge base population ; knowledge extraction ; Knowledge representation ; Labor market ; Linked Data ; Open data ; Population ; Recommender systems ; Semantic web ; Semantics ; Skills ; slot filling ; Technology adoption ; Websites</subject><ispartof>Information (Basel), 2022-11, Vol.13 (11), p.510</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3</citedby><cites>FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3</cites><orcidid>0000-0001-6399-045X ; 0000-0002-3319-7271 ; 0000-0001-5191-9816 ; 0000-0001-6904-0674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734629367/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734629367?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><creatorcontrib>Weichselbraun, Albert</creatorcontrib><creatorcontrib>Waldvogel, Roger</creatorcontrib><creatorcontrib>Fraefel, Andreas</creatorcontrib><creatorcontrib>van Schie, Alexander</creatorcontrib><creatorcontrib>Kuntschik, Philipp</creatorcontrib><title>Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web</title><title>Information (Basel)</title><description>As advances in science and technology, crisis, and increased competition impact labor markets, reskilling and upskilling programs emerged to mitigate their effects. Since information on continuing education is highly distributed across websites, choosing career paths and suitable upskilling options is currently considered a challenging and cumbersome task. This article, therefore, introduces a method for building a comprehensive knowledge graph from the education providers’ Web pages. We collect educational programs from 488 providers and leverage entity recognition and entity linking methods in conjunction with contextualization to extract knowledge on entities such as prerequisites, skills, learning objectives, and course content. Slot filling then integrates these entities into an extensive knowledge graph that contains close to 74,000 nodes and over 734,000 edges. A recommender system leverages the created graph, and background knowledge on occupations to provide a career path and upskilling suggestions. Finally, we evaluate the knowledge extraction approach on the CareerCoach 2022 gold standard and draw upon domain experts for judging the career paths and upskilling suggestions provided by the recommender system.</description><subject>Automation</subject><subject>Careers</subject><subject>Continuing education</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Education</subject><subject>Employees</subject><subject>entity classification</subject><subject>entity linking</subject><subject>entity recognition</subject><subject>Graph theory</subject><subject>knowledge base population</subject><subject>knowledge extraction</subject><subject>Knowledge representation</subject><subject>Labor market</subject><subject>Linked Data</subject><subject>Open data</subject><subject>Population</subject><subject>Recommender systems</subject><subject>Semantic web</subject><subject>Semantics</subject><subject>Skills</subject><subject>slot filling</subject><subject>Technology adoption</subject><subject>Websites</subject><issn>2078-2489</issn><issn>2078-2489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqDd_QMGrq0mnaZKjiq6isOAHHkM-JrVr29Ski_jv7bqyOJd5M8x784bJshNKzgEkuWh6HyhQShglO9lBQbiYFaWQu__wfnac0pJMwbkoBT3IwtWqaV3T1_lDH75adDXm86iH95Tr3uVPaEPXYe8w5s_facQu5T5MeFXXmMY17wnTR9O2a7hmvA7bcjGMTegnQgxdPr5j_obmKNvzuk14_JcPs9fbm5fru9njYn5_ffk4s1DxcQYGmavQgPBOSAfIpLCGAJQOsbKmAOs510wywSwxgBVDzYAxsIx7iXCY3W90XdBLNcSm0_FbBd2o30aItdJxbGyLyruyMFUJzlau9NQb6TTVWjJfcWu4mLRON1pDDJ-r6Wy1DKvYT_ZVwaGsCjl5nqbONlM2hpQi-u1WStT6Q-r_h-AHQuOFyg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Weichselbraun, Albert</creator><creator>Waldvogel, Roger</creator><creator>Fraefel, Andreas</creator><creator>van Schie, Alexander</creator><creator>Kuntschik, Philipp</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6399-045X</orcidid><orcidid>https://orcid.org/0000-0002-3319-7271</orcidid><orcidid>https://orcid.org/0000-0001-5191-9816</orcidid><orcidid>https://orcid.org/0000-0001-6904-0674</orcidid></search><sort><creationdate>20221101</creationdate><title>Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web</title><author>Weichselbraun, Albert ; Waldvogel, Roger ; Fraefel, Andreas ; van Schie, Alexander ; Kuntschik, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>Careers</topic><topic>Continuing education</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Education</topic><topic>Employees</topic><topic>entity classification</topic><topic>entity linking</topic><topic>entity recognition</topic><topic>Graph theory</topic><topic>knowledge base population</topic><topic>knowledge extraction</topic><topic>Knowledge representation</topic><topic>Labor market</topic><topic>Linked Data</topic><topic>Open data</topic><topic>Population</topic><topic>Recommender systems</topic><topic>Semantic web</topic><topic>Semantics</topic><topic>Skills</topic><topic>slot filling</topic><topic>Technology adoption</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weichselbraun, Albert</creatorcontrib><creatorcontrib>Waldvogel, Roger</creatorcontrib><creatorcontrib>Fraefel, Andreas</creatorcontrib><creatorcontrib>van Schie, Alexander</creatorcontrib><creatorcontrib>Kuntschik, Philipp</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Information (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weichselbraun, Albert</au><au>Waldvogel, Roger</au><au>Fraefel, Andreas</au><au>van Schie, Alexander</au><au>Kuntschik, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web</atitle><jtitle>Information (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>13</volume><issue>11</issue><spage>510</spage><pages>510-</pages><issn>2078-2489</issn><eissn>2078-2489</eissn><abstract>As advances in science and technology, crisis, and increased competition impact labor markets, reskilling and upskilling programs emerged to mitigate their effects. Since information on continuing education is highly distributed across websites, choosing career paths and suitable upskilling options is currently considered a challenging and cumbersome task. This article, therefore, introduces a method for building a comprehensive knowledge graph from the education providers’ Web pages. We collect educational programs from 488 providers and leverage entity recognition and entity linking methods in conjunction with contextualization to extract knowledge on entities such as prerequisites, skills, learning objectives, and course content. Slot filling then integrates these entities into an extensive knowledge graph that contains close to 74,000 nodes and over 734,000 edges. A recommender system leverages the created graph, and background knowledge on occupations to provide a career path and upskilling suggestions. Finally, we evaluate the knowledge extraction approach on the CareerCoach 2022 gold standard and draw upon domain experts for judging the career paths and upskilling suggestions provided by the recommender system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/info13110510</doi><orcidid>https://orcid.org/0000-0001-6399-045X</orcidid><orcidid>https://orcid.org/0000-0002-3319-7271</orcidid><orcidid>https://orcid.org/0000-0001-5191-9816</orcidid><orcidid>https://orcid.org/0000-0001-6904-0674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2078-2489
ispartof Information (Basel), 2022-11, Vol.13 (11), p.510
issn 2078-2489
2078-2489
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fd42b643dc6d4f1fb9da1aa95f67cb78
source Publicly Available Content Database
subjects Automation
Careers
Continuing education
Datasets
Deep learning
Education
Employees
entity classification
entity linking
entity recognition
Graph theory
knowledge base population
knowledge extraction
Knowledge representation
Labor market
Linked Data
Open data
Population
Recommender systems
Semantic web
Semantics
Skills
slot filling
Technology adoption
Websites
title Building Knowledge Graphs and Recommender Systems for Suggesting Reskilling and Upskilling Options from the Web
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Knowledge%20Graphs%20and%20Recommender%20Systems%20for%20Suggesting%20Reskilling%20and%20Upskilling%20Options%20from%20the%20Web&rft.jtitle=Information%20(Basel)&rft.au=Weichselbraun,%20Albert&rft.date=2022-11-01&rft.volume=13&rft.issue=11&rft.spage=510&rft.pages=510-&rft.issn=2078-2489&rft.eissn=2078-2489&rft_id=info:doi/10.3390/info13110510&rft_dat=%3Cproquest_doaj_%3E2734629367%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-3be5d6eb38fd89d3e598cb0334dee6cb23cf77a59585c0b3e65ea53553c57f9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734629367&rft_id=info:pmid/&rfr_iscdi=true