Loading…
Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment
Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AO...
Saved in:
Published in: | Nature communications 2018-03, Vol.9 (1), p.1127-12, Article 1127 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 1127 |
container_title | Nature communications |
container_volume | 9 |
creator | Einfalt, T. Witzigmann, D. Edlinger, C. Sieber, S. Goers, R. Najer, A. Spulber, M. Onaca-Fischer, O. Huwyler, J. Palivan, C. G. |
description | Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy.
The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo. |
doi_str_mv | 10.1038/s41467-018-03560-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c</doaj_id><sourcerecordid>2015396646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIRCE_wAFZ4jzg54x9QYKIR6RIXOBs-TUbr2bsYM8u2b-nNxNCcsGXbrurq7tcCL2m5B0lXL1vgop-6AhVHeGyJ93tM3TKiKAdHRh__ig_QeetbQkcrqkS4iU6YVpKqbQ-RflTKnOa45I8tnVJY_LJTrjUjc1xmmLDv9NyjVPG-7TUgm0O62UPuV8SvB7wUtNmE2sM2B0whB0USj7i5uRriXmfaslzzMsr9GK0U4vn9_EM_fzy-cfFt-7q-9fLi49XnZeCLJ0SngUXlBoco47ofrA8BhpGH4hUko9cSe0G6wYhWO-5trHn2juiRiYHK_kZulx5Q7Fbc1PTbOvBFJvM3QPIM0e1fopmDEI5QZhyVAo-EgdjuNZqdAxS6oHrw8p1s3NzDB5kVDs9IX1ayenabMrewKaaqQEI3t4T1PJrF9titmVXM-g3jFDJdd-LHlBsRcGPtVbj-DCBEnO03KyWG7Dc3FlubqHpzePdHlr-GgwAvgIalDKY9G_2f2j_AOE8uoE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015396646</pqid></control><display><type>article</type><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</creator><creatorcontrib>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</creatorcontrib><description>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy.
The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-03560-x</identifier><identifier>PMID: 29555899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13 ; 13/31 ; 14/19 ; 14/28 ; 14/34 ; 14/63 ; 147/143 ; 147/28 ; 631/57/2272/2276 ; 639/638/298/54/989 ; 64/116 ; Amino Acid Substitution ; Animals ; Artificial Cells - metabolism ; Biocatalysis ; Bioengineering ; Biomimetic Materials ; Biomimetics ; Biomolecules ; Cellular Microenvironment - physiology ; Embryos ; Endogenous stimuli ; Enzymatic activity ; Enzymes ; Feasibility studies ; Genetic modification ; Glutathione ; HeLa Cells ; Horseradish peroxidase ; Humanities and Social Sciences ; Humans ; Membrane proteins ; Molecular flow ; multidisciplinary ; Organelles ; Organelles - enzymology ; Peroxidase ; Porins ; Porins - chemistry ; Porins - genetics ; Porins - metabolism ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Science ; Science (multidisciplinary) ; Stimuli ; Surgical implants ; Zebrafish ; Zebrafish - embryology</subject><ispartof>Nature communications, 2018-03, Vol.9 (1), p.1127-12, Article 1127</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</citedby><cites>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</cites><orcidid>0000-0001-7777-5355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2015396646/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2015396646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29555899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einfalt, T.</creatorcontrib><creatorcontrib>Witzigmann, D.</creatorcontrib><creatorcontrib>Edlinger, C.</creatorcontrib><creatorcontrib>Sieber, S.</creatorcontrib><creatorcontrib>Goers, R.</creatorcontrib><creatorcontrib>Najer, A.</creatorcontrib><creatorcontrib>Spulber, M.</creatorcontrib><creatorcontrib>Onaca-Fischer, O.</creatorcontrib><creatorcontrib>Huwyler, J.</creatorcontrib><creatorcontrib>Palivan, C. G.</creatorcontrib><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy.
The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</description><subject>101/58</subject><subject>13</subject><subject>13/31</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>147/143</subject><subject>147/28</subject><subject>631/57/2272/2276</subject><subject>639/638/298/54/989</subject><subject>64/116</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Artificial Cells - metabolism</subject><subject>Biocatalysis</subject><subject>Bioengineering</subject><subject>Biomimetic Materials</subject><subject>Biomimetics</subject><subject>Biomolecules</subject><subject>Cellular Microenvironment - physiology</subject><subject>Embryos</subject><subject>Endogenous stimuli</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Feasibility studies</subject><subject>Genetic modification</subject><subject>Glutathione</subject><subject>HeLa Cells</subject><subject>Horseradish peroxidase</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Membrane proteins</subject><subject>Molecular flow</subject><subject>multidisciplinary</subject><subject>Organelles</subject><subject>Organelles - enzymology</subject><subject>Peroxidase</subject><subject>Porins</subject><subject>Porins - chemistry</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stimuli</subject><subject>Surgical implants</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctuFDEQtBCIRCE_wAFZ4jzg54x9QYKIR6RIXOBs-TUbr2bsYM8u2b-nNxNCcsGXbrurq7tcCL2m5B0lXL1vgop-6AhVHeGyJ93tM3TKiKAdHRh__ig_QeetbQkcrqkS4iU6YVpKqbQ-RflTKnOa45I8tnVJY_LJTrjUjc1xmmLDv9NyjVPG-7TUgm0O62UPuV8SvB7wUtNmE2sM2B0whB0USj7i5uRriXmfaslzzMsr9GK0U4vn9_EM_fzy-cfFt-7q-9fLi49XnZeCLJ0SngUXlBoco47ofrA8BhpGH4hUko9cSe0G6wYhWO-5trHn2juiRiYHK_kZulx5Q7Fbc1PTbOvBFJvM3QPIM0e1fopmDEI5QZhyVAo-EgdjuNZqdAxS6oHrw8p1s3NzDB5kVDs9IX1ayenabMrewKaaqQEI3t4T1PJrF9titmVXM-g3jFDJdd-LHlBsRcGPtVbj-DCBEnO03KyWG7Dc3FlubqHpzePdHlr-GgwAvgIalDKY9G_2f2j_AOE8uoE</recordid><startdate>20180319</startdate><enddate>20180319</enddate><creator>Einfalt, T.</creator><creator>Witzigmann, D.</creator><creator>Edlinger, C.</creator><creator>Sieber, S.</creator><creator>Goers, R.</creator><creator>Najer, A.</creator><creator>Spulber, M.</creator><creator>Onaca-Fischer, O.</creator><creator>Huwyler, J.</creator><creator>Palivan, C. G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid></search><sort><creationdate>20180319</creationdate><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><author>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/58</topic><topic>13</topic><topic>13/31</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>147/143</topic><topic>147/28</topic><topic>631/57/2272/2276</topic><topic>639/638/298/54/989</topic><topic>64/116</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Artificial Cells - metabolism</topic><topic>Biocatalysis</topic><topic>Bioengineering</topic><topic>Biomimetic Materials</topic><topic>Biomimetics</topic><topic>Biomolecules</topic><topic>Cellular Microenvironment - physiology</topic><topic>Embryos</topic><topic>Endogenous stimuli</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Feasibility studies</topic><topic>Genetic modification</topic><topic>Glutathione</topic><topic>HeLa Cells</topic><topic>Horseradish peroxidase</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Membrane proteins</topic><topic>Molecular flow</topic><topic>multidisciplinary</topic><topic>Organelles</topic><topic>Organelles - enzymology</topic><topic>Peroxidase</topic><topic>Porins</topic><topic>Porins - chemistry</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stimuli</topic><topic>Surgical implants</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einfalt, T.</creatorcontrib><creatorcontrib>Witzigmann, D.</creatorcontrib><creatorcontrib>Edlinger, C.</creatorcontrib><creatorcontrib>Sieber, S.</creatorcontrib><creatorcontrib>Goers, R.</creatorcontrib><creatorcontrib>Najer, A.</creatorcontrib><creatorcontrib>Spulber, M.</creatorcontrib><creatorcontrib>Onaca-Fischer, O.</creatorcontrib><creatorcontrib>Huwyler, J.</creatorcontrib><creatorcontrib>Palivan, C. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einfalt, T.</au><au>Witzigmann, D.</au><au>Edlinger, C.</au><au>Sieber, S.</au><au>Goers, R.</au><au>Najer, A.</au><au>Spulber, M.</au><au>Onaca-Fischer, O.</au><au>Huwyler, J.</au><au>Palivan, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-03-19</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1127</spage><epage>12</epage><pages>1127-12</pages><artnum>1127</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy.
The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29555899</pmid><doi>10.1038/s41467-018-03560-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-03, Vol.9 (1), p.1127-12, Article 1127 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 101/58 13 13/31 14/19 14/28 14/34 14/63 147/143 147/28 631/57/2272/2276 639/638/298/54/989 64/116 Amino Acid Substitution Animals Artificial Cells - metabolism Biocatalysis Bioengineering Biomimetic Materials Biomimetics Biomolecules Cellular Microenvironment - physiology Embryos Endogenous stimuli Enzymatic activity Enzymes Feasibility studies Genetic modification Glutathione HeLa Cells Horseradish peroxidase Humanities and Social Sciences Humans Membrane proteins Molecular flow multidisciplinary Organelles Organelles - enzymology Peroxidase Porins Porins - chemistry Porins - genetics Porins - metabolism Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Science Science (multidisciplinary) Stimuli Surgical implants Zebrafish Zebrafish - embryology |
title | Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20artificial%20organelles%20with%20in%20vitro%20and%20in%20vivo%20activity%20triggered%20by%20reduction%20in%20microenvironment&rft.jtitle=Nature%20communications&rft.au=Einfalt,%20T.&rft.date=2018-03-19&rft.volume=9&rft.issue=1&rft.spage=1127&rft.epage=12&rft.pages=1127-12&rft.artnum=1127&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-03560-x&rft_dat=%3Cproquest_doaj_%3E2015396646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2015396646&rft_id=info:pmid/29555899&rfr_iscdi=true |