Loading…

Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment

Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AO...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-03, Vol.9 (1), p.1127-12, Article 1127
Main Authors: Einfalt, T., Witzigmann, D., Edlinger, C., Sieber, S., Goers, R., Najer, A., Spulber, M., Onaca-Fischer, O., Huwyler, J., Palivan, C. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53
cites cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53
container_end_page 12
container_issue 1
container_start_page 1127
container_title Nature communications
container_volume 9
creator Einfalt, T.
Witzigmann, D.
Edlinger, C.
Sieber, S.
Goers, R.
Najer, A.
Spulber, M.
Onaca-Fischer, O.
Huwyler, J.
Palivan, C. G.
description Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.
doi_str_mv 10.1038/s41467-018-03560-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c</doaj_id><sourcerecordid>2015396646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIRCE_wAFZ4jzg54x9QYKIR6RIXOBs-TUbr2bsYM8u2b-nNxNCcsGXbrurq7tcCL2m5B0lXL1vgop-6AhVHeGyJ93tM3TKiKAdHRh__ig_QeetbQkcrqkS4iU6YVpKqbQ-RflTKnOa45I8tnVJY_LJTrjUjc1xmmLDv9NyjVPG-7TUgm0O62UPuV8SvB7wUtNmE2sM2B0whB0USj7i5uRriXmfaslzzMsr9GK0U4vn9_EM_fzy-cfFt-7q-9fLi49XnZeCLJ0SngUXlBoco47ofrA8BhpGH4hUko9cSe0G6wYhWO-5trHn2juiRiYHK_kZulx5Q7Fbc1PTbOvBFJvM3QPIM0e1fopmDEI5QZhyVAo-EgdjuNZqdAxS6oHrw8p1s3NzDB5kVDs9IX1ayenabMrewKaaqQEI3t4T1PJrF9titmVXM-g3jFDJdd-LHlBsRcGPtVbj-DCBEnO03KyWG7Dc3FlubqHpzePdHlr-GgwAvgIalDKY9G_2f2j_AOE8uoE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015396646</pqid></control><display><type>article</type><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</creator><creatorcontrib>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</creatorcontrib><description>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-03560-x</identifier><identifier>PMID: 29555899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13 ; 13/31 ; 14/19 ; 14/28 ; 14/34 ; 14/63 ; 147/143 ; 147/28 ; 631/57/2272/2276 ; 639/638/298/54/989 ; 64/116 ; Amino Acid Substitution ; Animals ; Artificial Cells - metabolism ; Biocatalysis ; Bioengineering ; Biomimetic Materials ; Biomimetics ; Biomolecules ; Cellular Microenvironment - physiology ; Embryos ; Endogenous stimuli ; Enzymatic activity ; Enzymes ; Feasibility studies ; Genetic modification ; Glutathione ; HeLa Cells ; Horseradish peroxidase ; Humanities and Social Sciences ; Humans ; Membrane proteins ; Molecular flow ; multidisciplinary ; Organelles ; Organelles - enzymology ; Peroxidase ; Porins ; Porins - chemistry ; Porins - genetics ; Porins - metabolism ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Science ; Science (multidisciplinary) ; Stimuli ; Surgical implants ; Zebrafish ; Zebrafish - embryology</subject><ispartof>Nature communications, 2018-03, Vol.9 (1), p.1127-12, Article 1127</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</citedby><cites>FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</cites><orcidid>0000-0001-7777-5355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2015396646/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2015396646?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29555899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einfalt, T.</creatorcontrib><creatorcontrib>Witzigmann, D.</creatorcontrib><creatorcontrib>Edlinger, C.</creatorcontrib><creatorcontrib>Sieber, S.</creatorcontrib><creatorcontrib>Goers, R.</creatorcontrib><creatorcontrib>Najer, A.</creatorcontrib><creatorcontrib>Spulber, M.</creatorcontrib><creatorcontrib>Onaca-Fischer, O.</creatorcontrib><creatorcontrib>Huwyler, J.</creatorcontrib><creatorcontrib>Palivan, C. G.</creatorcontrib><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</description><subject>101/58</subject><subject>13</subject><subject>13/31</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/63</subject><subject>147/143</subject><subject>147/28</subject><subject>631/57/2272/2276</subject><subject>639/638/298/54/989</subject><subject>64/116</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Artificial Cells - metabolism</subject><subject>Biocatalysis</subject><subject>Bioengineering</subject><subject>Biomimetic Materials</subject><subject>Biomimetics</subject><subject>Biomolecules</subject><subject>Cellular Microenvironment - physiology</subject><subject>Embryos</subject><subject>Endogenous stimuli</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Feasibility studies</subject><subject>Genetic modification</subject><subject>Glutathione</subject><subject>HeLa Cells</subject><subject>Horseradish peroxidase</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Membrane proteins</subject><subject>Molecular flow</subject><subject>multidisciplinary</subject><subject>Organelles</subject><subject>Organelles - enzymology</subject><subject>Peroxidase</subject><subject>Porins</subject><subject>Porins - chemistry</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stimuli</subject><subject>Surgical implants</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctuFDEQtBCIRCE_wAFZ4jzg54x9QYKIR6RIXOBs-TUbr2bsYM8u2b-nNxNCcsGXbrurq7tcCL2m5B0lXL1vgop-6AhVHeGyJ93tM3TKiKAdHRh__ig_QeetbQkcrqkS4iU6YVpKqbQ-RflTKnOa45I8tnVJY_LJTrjUjc1xmmLDv9NyjVPG-7TUgm0O62UPuV8SvB7wUtNmE2sM2B0whB0USj7i5uRriXmfaslzzMsr9GK0U4vn9_EM_fzy-cfFt-7q-9fLi49XnZeCLJ0SngUXlBoco47ofrA8BhpGH4hUko9cSe0G6wYhWO-5trHn2juiRiYHK_kZulx5Q7Fbc1PTbOvBFJvM3QPIM0e1fopmDEI5QZhyVAo-EgdjuNZqdAxS6oHrw8p1s3NzDB5kVDs9IX1ayenabMrewKaaqQEI3t4T1PJrF9titmVXM-g3jFDJdd-LHlBsRcGPtVbj-DCBEnO03KyWG7Dc3FlubqHpzePdHlr-GgwAvgIalDKY9G_2f2j_AOE8uoE</recordid><startdate>20180319</startdate><enddate>20180319</enddate><creator>Einfalt, T.</creator><creator>Witzigmann, D.</creator><creator>Edlinger, C.</creator><creator>Sieber, S.</creator><creator>Goers, R.</creator><creator>Najer, A.</creator><creator>Spulber, M.</creator><creator>Onaca-Fischer, O.</creator><creator>Huwyler, J.</creator><creator>Palivan, C. G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid></search><sort><creationdate>20180319</creationdate><title>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</title><author>Einfalt, T. ; Witzigmann, D. ; Edlinger, C. ; Sieber, S. ; Goers, R. ; Najer, A. ; Spulber, M. ; Onaca-Fischer, O. ; Huwyler, J. ; Palivan, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/58</topic><topic>13</topic><topic>13/31</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/63</topic><topic>147/143</topic><topic>147/28</topic><topic>631/57/2272/2276</topic><topic>639/638/298/54/989</topic><topic>64/116</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Artificial Cells - metabolism</topic><topic>Biocatalysis</topic><topic>Bioengineering</topic><topic>Biomimetic Materials</topic><topic>Biomimetics</topic><topic>Biomolecules</topic><topic>Cellular Microenvironment - physiology</topic><topic>Embryos</topic><topic>Endogenous stimuli</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Feasibility studies</topic><topic>Genetic modification</topic><topic>Glutathione</topic><topic>HeLa Cells</topic><topic>Horseradish peroxidase</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Membrane proteins</topic><topic>Molecular flow</topic><topic>multidisciplinary</topic><topic>Organelles</topic><topic>Organelles - enzymology</topic><topic>Peroxidase</topic><topic>Porins</topic><topic>Porins - chemistry</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stimuli</topic><topic>Surgical implants</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einfalt, T.</creatorcontrib><creatorcontrib>Witzigmann, D.</creatorcontrib><creatorcontrib>Edlinger, C.</creatorcontrib><creatorcontrib>Sieber, S.</creatorcontrib><creatorcontrib>Goers, R.</creatorcontrib><creatorcontrib>Najer, A.</creatorcontrib><creatorcontrib>Spulber, M.</creatorcontrib><creatorcontrib>Onaca-Fischer, O.</creatorcontrib><creatorcontrib>Huwyler, J.</creatorcontrib><creatorcontrib>Palivan, C. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einfalt, T.</au><au>Witzigmann, D.</au><au>Edlinger, C.</au><au>Sieber, S.</au><au>Goers, R.</au><au>Najer, A.</au><au>Spulber, M.</au><au>Onaca-Fischer, O.</au><au>Huwyler, J.</au><au>Palivan, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-03-19</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1127</spage><epage>12</epage><pages>1127-12</pages><artnum>1127</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Despite tremendous efforts to develop stimuli-responsive enzyme delivery systems, their efficacy has been mostly limited to in vitro applications. Here we introduce, by using an approach of combining biomolecules with artificial compartments, a biomimetic strategy to create artificial organelles (AOs) as cellular implants, with endogenous stimuli-triggered enzymatic activity. AOs are produced by inserting protein gates in the membrane of polymersomes containing horseradish peroxidase enzymes selected as a model for natures own enzymes involved in the redox homoeostasis. The inserted protein gates are engineered by attaching molecular caps to genetically modified channel porins in order to induce redox-responsive control of the molecular flow through the membrane. AOs preserve their structure and are activated by intracellular glutathione levels in vitro. Importantly, our biomimetic AOs are functional in vivo in zebrafish embryos, which demonstrates the feasibility of using AOs as cellular implants in living organisms. This opens new perspectives for patient-oriented protein therapy. The efficacy of stimuli-responsive enzyme delivery systems is usually limited to in vitro applications. Here the authors form artificial organelles by inserting stimuli-responsive protein gates in membranes of polymersomes loaded with enzymes and obtain a triggered functionality both in vitro and in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29555899</pmid><doi>10.1038/s41467-018-03560-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7777-5355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-03, Vol.9 (1), p.1127-12, Article 1127
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fd48b4028b1543f0b1df3998fb2b1d1c
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/58
13
13/31
14/19
14/28
14/34
14/63
147/143
147/28
631/57/2272/2276
639/638/298/54/989
64/116
Amino Acid Substitution
Animals
Artificial Cells - metabolism
Biocatalysis
Bioengineering
Biomimetic Materials
Biomimetics
Biomolecules
Cellular Microenvironment - physiology
Embryos
Endogenous stimuli
Enzymatic activity
Enzymes
Feasibility studies
Genetic modification
Glutathione
HeLa Cells
Horseradish peroxidase
Humanities and Social Sciences
Humans
Membrane proteins
Molecular flow
multidisciplinary
Organelles
Organelles - enzymology
Peroxidase
Porins
Porins - chemistry
Porins - genetics
Porins - metabolism
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Science
Science (multidisciplinary)
Stimuli
Surgical implants
Zebrafish
Zebrafish - embryology
title Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20artificial%20organelles%20with%20in%20vitro%20and%20in%20vivo%20activity%20triggered%20by%20reduction%20in%20microenvironment&rft.jtitle=Nature%20communications&rft.au=Einfalt,%20T.&rft.date=2018-03-19&rft.volume=9&rft.issue=1&rft.spage=1127&rft.epage=12&rft.pages=1127-12&rft.artnum=1127&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-03560-x&rft_dat=%3Cproquest_doaj_%3E2015396646%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-84c2dbd887b21b0967a3ed1dfcd05853f3859b7ab74426c39ae639cb08f257a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2015396646&rft_id=info:pmid/29555899&rfr_iscdi=true