Loading…

YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses

The increasing broiler demand due to overpopulation and meat imports presents challenges in poultry farming, including management, disease control, and chicken observation in varying light conditions. To address these issues, the development of AI-based management processes is crucial, especially co...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2023-08, Vol.13 (8), p.1527
Main Authors: Elmessery, Wael M., Gutiérrez, Joaquín, Abd El-Wahhab, Gomaa G., Elkhaiat, Ibrahim A., El-Soaly, Ibrahim S., Alhag, Sadeq K., Al-Shuraym, Laila A., Akela, Mohamed A., Moghanm, Farahat S., Abdelshafie, Mohamed F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53
cites cdi_FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53
container_end_page
container_issue 8
container_start_page 1527
container_title Agriculture (Basel)
container_volume 13
creator Elmessery, Wael M.
Gutiérrez, Joaquín
Abd El-Wahhab, Gomaa G.
Elkhaiat, Ibrahim A.
El-Soaly, Ibrahim S.
Alhag, Sadeq K.
Al-Shuraym, Laila A.
Akela, Mohamed A.
Moghanm, Farahat S.
Abdelshafie, Mohamed F.
description The increasing broiler demand due to overpopulation and meat imports presents challenges in poultry farming, including management, disease control, and chicken observation in varying light conditions. To address these issues, the development of AI-based management processes is crucial, especially considering the need for detecting pathological phenomena in intensive rearing. In this study, a dataset consisting of visual and thermal images was created to capture pathological phenomena in broilers. The dataset contains 10,000 images with 50,000 annotations labeled as lethargic chickens, slipped tendons, diseased eyes, stressed (beaks open), pendulous crop, and healthy broiler. Three versions of the YOLO-based algorithm (v8, v7, and v5) were assessed, utilizing augmented thermal and visual image datasets with various augmentation methods. The aim was to develop thermal- and visual-based models for detecting broilers in complex environments, and secondarily, to classify pathological phenomena under challenging lighting conditions. After training on acknowledged pathological phenomena, the thermal YOLOv8-based model demonstrated exceptional performance, achieving the highest accuracy in object detection (mAP50 of 0.988) and classification (F1 score of 0.972). This outstanding performance makes it a reliable tool for both broiler detection and pathological phenomena classification, attributed to the use of comprehensive datasets during training and development, enabling accurate and efficient detection even in complex environmental conditions. By employing both visual- and thermal-based models for monitoring, farmers can obtain results from both thermal and visual viewpoints, ultimately enhancing the overall reliability of the monitoring process.
doi_str_mv 10.3390/agriculture13081527
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd5ad39b0b374e5a9786e8d2a40119f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762479299</galeid><doaj_id>oai_doaj_org_article_fd5ad39b0b374e5a9786e8d2a40119f8</doaj_id><sourcerecordid>A762479299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53</originalsourceid><addsrcrecordid>eNptUU2P1DAMrRBIrJb9BVwicZ4lH03THGeXjx1p0MxhQeJUuYnTZtQ2S5Ii7T_gZ5PdQYgD9sGW7ff0bFfVW0avhdD0PQzRm3XKa0QmaMskVy-qC06V2tBa8Zf_5K-rq5ROtJhmoqXNRfXr-2F_2NxAQku-BIsTcSGS7ZrDDNkb8gEzmuzDQoIjNzH4CSM5Qh7DFAZvYCLHEZcw4wIkjzGsw0i--bSWBiyW3I8Y55LvZhgwEb-Q3ZJxSf4nkmMoouMjuQtrwvSmeuVgSnj1J15WXz99vL-92-wPn3e32_3G1Fzljei1Vlw3fQMCpGC1ra0xtJXQNoBM10LrvmbcSERdo3Vctmi56o1zaKwUl9XuzGsDnLqH6GeIj10A3z0XQhw6iGXzCTtnJVihe9oLVaMErdoGW8uhpoxp1xaud2euhxh-rJhydwprXIr8jreyUZKqhpap6_PUAIXULy7kCKa4xdmbsKArR-22quG10lzrAhBngIkhpYjur0xGu6eXd_95ufgNLz6jbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856750760</pqid></control><display><type>article</type><title>YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses</title><source>Publicly Available Content Database</source><creator>Elmessery, Wael M. ; Gutiérrez, Joaquín ; Abd El-Wahhab, Gomaa G. ; Elkhaiat, Ibrahim A. ; El-Soaly, Ibrahim S. ; Alhag, Sadeq K. ; Al-Shuraym, Laila A. ; Akela, Mohamed A. ; Moghanm, Farahat S. ; Abdelshafie, Mohamed F.</creator><creatorcontrib>Elmessery, Wael M. ; Gutiérrez, Joaquín ; Abd El-Wahhab, Gomaa G. ; Elkhaiat, Ibrahim A. ; El-Soaly, Ibrahim S. ; Alhag, Sadeq K. ; Al-Shuraym, Laila A. ; Akela, Mohamed A. ; Moghanm, Farahat S. ; Abdelshafie, Mohamed F.</creatorcontrib><description>The increasing broiler demand due to overpopulation and meat imports presents challenges in poultry farming, including management, disease control, and chicken observation in varying light conditions. To address these issues, the development of AI-based management processes is crucial, especially considering the need for detecting pathological phenomena in intensive rearing. In this study, a dataset consisting of visual and thermal images was created to capture pathological phenomena in broilers. The dataset contains 10,000 images with 50,000 annotations labeled as lethargic chickens, slipped tendons, diseased eyes, stressed (beaks open), pendulous crop, and healthy broiler. Three versions of the YOLO-based algorithm (v8, v7, and v5) were assessed, utilizing augmented thermal and visual image datasets with various augmentation methods. The aim was to develop thermal- and visual-based models for detecting broilers in complex environments, and secondarily, to classify pathological phenomena under challenging lighting conditions. After training on acknowledged pathological phenomena, the thermal YOLOv8-based model demonstrated exceptional performance, achieving the highest accuracy in object detection (mAP50 of 0.988) and classification (F1 score of 0.972). This outstanding performance makes it a reliable tool for both broiler detection and pathological phenomena classification, attributed to the use of comprehensive datasets during training and development, enabling accurate and efficient detection even in complex environmental conditions. By employing both visual- and thermal-based models for monitoring, farmers can obtain results from both thermal and visual viewpoints, ultimately enhancing the overall reliability of the monitoring process.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture13081527</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Annotations ; Artificial intelligence ; augmentation techniques ; Beaks ; Chickens ; Classification ; Datasets ; Disease control ; Environmental conditions ; Heat detection ; Imports ; intensive poultry houses ; International economic relations ; Livestock farms ; Meat ; Meat industry ; Monitoring ; Object recognition ; Overpopulation ; pathological phenomena identification ; Poultry ; Poultry farming ; Poultry housing ; Poultry industry ; Tendons ; Thermal imaging ; thermography ; Training ; YOLO-based object detection</subject><ispartof>Agriculture (Basel), 2023-08, Vol.13 (8), p.1527</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53</citedby><cites>FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53</cites><orcidid>0000-0002-2298-9898 ; 0000-0002-7127-1938 ; 0000-0002-1378-9579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856750760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856750760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Elmessery, Wael M.</creatorcontrib><creatorcontrib>Gutiérrez, Joaquín</creatorcontrib><creatorcontrib>Abd El-Wahhab, Gomaa G.</creatorcontrib><creatorcontrib>Elkhaiat, Ibrahim A.</creatorcontrib><creatorcontrib>El-Soaly, Ibrahim S.</creatorcontrib><creatorcontrib>Alhag, Sadeq K.</creatorcontrib><creatorcontrib>Al-Shuraym, Laila A.</creatorcontrib><creatorcontrib>Akela, Mohamed A.</creatorcontrib><creatorcontrib>Moghanm, Farahat S.</creatorcontrib><creatorcontrib>Abdelshafie, Mohamed F.</creatorcontrib><title>YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses</title><title>Agriculture (Basel)</title><description>The increasing broiler demand due to overpopulation and meat imports presents challenges in poultry farming, including management, disease control, and chicken observation in varying light conditions. To address these issues, the development of AI-based management processes is crucial, especially considering the need for detecting pathological phenomena in intensive rearing. In this study, a dataset consisting of visual and thermal images was created to capture pathological phenomena in broilers. The dataset contains 10,000 images with 50,000 annotations labeled as lethargic chickens, slipped tendons, diseased eyes, stressed (beaks open), pendulous crop, and healthy broiler. Three versions of the YOLO-based algorithm (v8, v7, and v5) were assessed, utilizing augmented thermal and visual image datasets with various augmentation methods. The aim was to develop thermal- and visual-based models for detecting broilers in complex environments, and secondarily, to classify pathological phenomena under challenging lighting conditions. After training on acknowledged pathological phenomena, the thermal YOLOv8-based model demonstrated exceptional performance, achieving the highest accuracy in object detection (mAP50 of 0.988) and classification (F1 score of 0.972). This outstanding performance makes it a reliable tool for both broiler detection and pathological phenomena classification, attributed to the use of comprehensive datasets during training and development, enabling accurate and efficient detection even in complex environmental conditions. By employing both visual- and thermal-based models for monitoring, farmers can obtain results from both thermal and visual viewpoints, ultimately enhancing the overall reliability of the monitoring process.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>augmentation techniques</subject><subject>Beaks</subject><subject>Chickens</subject><subject>Classification</subject><subject>Datasets</subject><subject>Disease control</subject><subject>Environmental conditions</subject><subject>Heat detection</subject><subject>Imports</subject><subject>intensive poultry houses</subject><subject>International economic relations</subject><subject>Livestock farms</subject><subject>Meat</subject><subject>Meat industry</subject><subject>Monitoring</subject><subject>Object recognition</subject><subject>Overpopulation</subject><subject>pathological phenomena identification</subject><subject>Poultry</subject><subject>Poultry farming</subject><subject>Poultry housing</subject><subject>Poultry industry</subject><subject>Tendons</subject><subject>Thermal imaging</subject><subject>thermography</subject><subject>Training</subject><subject>YOLO-based object detection</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU2P1DAMrRBIrJb9BVwicZ4lH03THGeXjx1p0MxhQeJUuYnTZtQ2S5Ii7T_gZ5PdQYgD9sGW7ff0bFfVW0avhdD0PQzRm3XKa0QmaMskVy-qC06V2tBa8Zf_5K-rq5ROtJhmoqXNRfXr-2F_2NxAQku-BIsTcSGS7ZrDDNkb8gEzmuzDQoIjNzH4CSM5Qh7DFAZvYCLHEZcw4wIkjzGsw0i--bSWBiyW3I8Y55LvZhgwEb-Q3ZJxSf4nkmMoouMjuQtrwvSmeuVgSnj1J15WXz99vL-92-wPn3e32_3G1Fzljei1Vlw3fQMCpGC1ra0xtJXQNoBM10LrvmbcSERdo3Vctmi56o1zaKwUl9XuzGsDnLqH6GeIj10A3z0XQhw6iGXzCTtnJVihe9oLVaMErdoGW8uhpoxp1xaud2euhxh-rJhydwprXIr8jreyUZKqhpap6_PUAIXULy7kCKa4xdmbsKArR-22quG10lzrAhBngIkhpYjur0xGu6eXd_95ufgNLz6jbg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Elmessery, Wael M.</creator><creator>Gutiérrez, Joaquín</creator><creator>Abd El-Wahhab, Gomaa G.</creator><creator>Elkhaiat, Ibrahim A.</creator><creator>El-Soaly, Ibrahim S.</creator><creator>Alhag, Sadeq K.</creator><creator>Al-Shuraym, Laila A.</creator><creator>Akela, Mohamed A.</creator><creator>Moghanm, Farahat S.</creator><creator>Abdelshafie, Mohamed F.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2298-9898</orcidid><orcidid>https://orcid.org/0000-0002-7127-1938</orcidid><orcidid>https://orcid.org/0000-0002-1378-9579</orcidid></search><sort><creationdate>20230801</creationdate><title>YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses</title><author>Elmessery, Wael M. ; Gutiérrez, Joaquín ; Abd El-Wahhab, Gomaa G. ; Elkhaiat, Ibrahim A. ; El-Soaly, Ibrahim S. ; Alhag, Sadeq K. ; Al-Shuraym, Laila A. ; Akela, Mohamed A. ; Moghanm, Farahat S. ; Abdelshafie, Mohamed F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>augmentation techniques</topic><topic>Beaks</topic><topic>Chickens</topic><topic>Classification</topic><topic>Datasets</topic><topic>Disease control</topic><topic>Environmental conditions</topic><topic>Heat detection</topic><topic>Imports</topic><topic>intensive poultry houses</topic><topic>International economic relations</topic><topic>Livestock farms</topic><topic>Meat</topic><topic>Meat industry</topic><topic>Monitoring</topic><topic>Object recognition</topic><topic>Overpopulation</topic><topic>pathological phenomena identification</topic><topic>Poultry</topic><topic>Poultry farming</topic><topic>Poultry housing</topic><topic>Poultry industry</topic><topic>Tendons</topic><topic>Thermal imaging</topic><topic>thermography</topic><topic>Training</topic><topic>YOLO-based object detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmessery, Wael M.</creatorcontrib><creatorcontrib>Gutiérrez, Joaquín</creatorcontrib><creatorcontrib>Abd El-Wahhab, Gomaa G.</creatorcontrib><creatorcontrib>Elkhaiat, Ibrahim A.</creatorcontrib><creatorcontrib>El-Soaly, Ibrahim S.</creatorcontrib><creatorcontrib>Alhag, Sadeq K.</creatorcontrib><creatorcontrib>Al-Shuraym, Laila A.</creatorcontrib><creatorcontrib>Akela, Mohamed A.</creatorcontrib><creatorcontrib>Moghanm, Farahat S.</creatorcontrib><creatorcontrib>Abdelshafie, Mohamed F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmessery, Wael M.</au><au>Gutiérrez, Joaquín</au><au>Abd El-Wahhab, Gomaa G.</au><au>Elkhaiat, Ibrahim A.</au><au>El-Soaly, Ibrahim S.</au><au>Alhag, Sadeq K.</au><au>Al-Shuraym, Laila A.</au><au>Akela, Mohamed A.</au><au>Moghanm, Farahat S.</au><au>Abdelshafie, Mohamed F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses</atitle><jtitle>Agriculture (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>1527</spage><pages>1527-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>The increasing broiler demand due to overpopulation and meat imports presents challenges in poultry farming, including management, disease control, and chicken observation in varying light conditions. To address these issues, the development of AI-based management processes is crucial, especially considering the need for detecting pathological phenomena in intensive rearing. In this study, a dataset consisting of visual and thermal images was created to capture pathological phenomena in broilers. The dataset contains 10,000 images with 50,000 annotations labeled as lethargic chickens, slipped tendons, diseased eyes, stressed (beaks open), pendulous crop, and healthy broiler. Three versions of the YOLO-based algorithm (v8, v7, and v5) were assessed, utilizing augmented thermal and visual image datasets with various augmentation methods. The aim was to develop thermal- and visual-based models for detecting broilers in complex environments, and secondarily, to classify pathological phenomena under challenging lighting conditions. After training on acknowledged pathological phenomena, the thermal YOLOv8-based model demonstrated exceptional performance, achieving the highest accuracy in object detection (mAP50 of 0.988) and classification (F1 score of 0.972). This outstanding performance makes it a reliable tool for both broiler detection and pathological phenomena classification, attributed to the use of comprehensive datasets during training and development, enabling accurate and efficient detection even in complex environmental conditions. By employing both visual- and thermal-based models for monitoring, farmers can obtain results from both thermal and visual viewpoints, ultimately enhancing the overall reliability of the monitoring process.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture13081527</doi><orcidid>https://orcid.org/0000-0002-2298-9898</orcidid><orcidid>https://orcid.org/0000-0002-7127-1938</orcidid><orcidid>https://orcid.org/0000-0002-1378-9579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2023-08, Vol.13 (8), p.1527
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fd5ad39b0b374e5a9786e8d2a40119f8
source Publicly Available Content Database
subjects Algorithms
Annotations
Artificial intelligence
augmentation techniques
Beaks
Chickens
Classification
Datasets
Disease control
Environmental conditions
Heat detection
Imports
intensive poultry houses
International economic relations
Livestock farms
Meat
Meat industry
Monitoring
Object recognition
Overpopulation
pathological phenomena identification
Poultry
Poultry farming
Poultry housing
Poultry industry
Tendons
Thermal imaging
thermography
Training
YOLO-based object detection
title YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLO-Based%20Model%20for%20Automatic%20Detection%20of%20Broiler%20Pathological%20Phenomena%20through%20Visual%20and%20Thermal%20Images%20in%20Intensive%20Poultry%20Houses&rft.jtitle=Agriculture%20(Basel)&rft.au=Elmessery,%20Wael%20M.&rft.date=2023-08-01&rft.volume=13&rft.issue=8&rft.spage=1527&rft.pages=1527-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture13081527&rft_dat=%3Cgale_doaj_%3EA762479299%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-3b997296b6a3a5314d4dcc085a86ae194399b412c5ee94edf258ed27bcffecd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856750760&rft_id=info:pmid/&rft_galeid=A762479299&rfr_iscdi=true