Loading…

Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions

By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the funct...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2022-07, Vol.14 (7), p.1413
Main Authors: Cotîrlă, Luminiţa-Ioana, Wanas, Abbas Kareem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3
cites cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3
container_end_page
container_issue 7
container_start_page 1413
container_title Symmetry (Basel)
container_volume 14
creator Cotîrlă, Luminiţa-Ioana
Wanas, Abbas Kareem
description By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.
doi_str_mv 10.3390/sym14071413
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b</doaj_id><sourcerecordid>2694025103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqV35AwGXMprXZDJLKa0W6gOs65CnpM40NZki49c7tSK9m_vg3HPvOQBcYnRDaY1uc99ihirMMD0BI4IqWoi6ZqdH9TmY5LxGQ5SoZByNwOy1b1vXpWDgKrptE7pv-Kj2vcvQxwQVfHJfcK7a0PQweviSXO5UasKHg_PdxnQhbvIFOPOqyW7yl8fgbT5bTR-K5fP9Ynq3LAypWVcY7QQvPfaMeMYV0oRqhwXhwtZaUVsRxTzVwhI_COKVMxZzTpwQRBnlLB2DxYHXRrWW2xRalXoZVZC_g5jepUpdMI2T3lZUcI-GfcFE7TXXmGkrnBGeeaIHrqsD1zbFz90gSq7jLm2G9yXhNUOkxIgOqOsDyqSYc3L-_ypGcm-7PLKd_gACJHTa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694025103</pqid></control><display><type>article</type><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><source>Publicly Available Content (ProQuest)</source><creator>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</creator><creatorcontrib>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</creatorcontrib><description>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14071413</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analytic functions ; coefficient estimates ; Mathematical analysis ; Matrices (mathematics) ; prestarlike functions ; Toeplitz matrices ; univalent functions</subject><ispartof>Symmetry (Basel), 2022-07, Vol.14 (7), p.1413</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</citedby><cites>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</cites><orcidid>0000-0002-0269-0688 ; 0000-0001-5838-7365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694025103/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694025103?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Cotîrlă, Luminiţa-Ioana</creatorcontrib><creatorcontrib>Wanas, Abbas Kareem</creatorcontrib><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><title>Symmetry (Basel)</title><description>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</description><subject>Analytic functions</subject><subject>coefficient estimates</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>prestarlike functions</subject><subject>Toeplitz matrices</subject><subject>univalent functions</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtKAzEUDaJgqV35AwGXMprXZDJLKa0W6gOs65CnpM40NZki49c7tSK9m_vg3HPvOQBcYnRDaY1uc99ihirMMD0BI4IqWoi6ZqdH9TmY5LxGQ5SoZByNwOy1b1vXpWDgKrptE7pv-Kj2vcvQxwQVfHJfcK7a0PQweviSXO5UasKHg_PdxnQhbvIFOPOqyW7yl8fgbT5bTR-K5fP9Ynq3LAypWVcY7QQvPfaMeMYV0oRqhwXhwtZaUVsRxTzVwhI_COKVMxZzTpwQRBnlLB2DxYHXRrWW2xRalXoZVZC_g5jepUpdMI2T3lZUcI-GfcFE7TXXmGkrnBGeeaIHrqsD1zbFz90gSq7jLm2G9yXhNUOkxIgOqOsDyqSYc3L-_ypGcm-7PLKd_gACJHTa</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Cotîrlă, Luminiţa-Ioana</creator><creator>Wanas, Abbas Kareem</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0269-0688</orcidid><orcidid>https://orcid.org/0000-0001-5838-7365</orcidid></search><sort><creationdate>20220701</creationdate><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><author>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>coefficient estimates</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>prestarlike functions</topic><topic>Toeplitz matrices</topic><topic>univalent functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotîrlă, Luminiţa-Ioana</creatorcontrib><creatorcontrib>Wanas, Abbas Kareem</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotîrlă, Luminiţa-Ioana</au><au>Wanas, Abbas Kareem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1413</spage><pages>1413-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14071413</doi><orcidid>https://orcid.org/0000-0002-0269-0688</orcidid><orcidid>https://orcid.org/0000-0001-5838-7365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2022-07, Vol.14 (7), p.1413
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b
source Publicly Available Content (ProQuest)
subjects Analytic functions
coefficient estimates
Mathematical analysis
Matrices (mathematics)
prestarlike functions
Toeplitz matrices
univalent functions
title Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20Toeplitz%20Matrices%20for%20a%20New%20Family%20of%20Prestarlike%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Cot%C3%AErl%C4%83,%20Lumini%C5%A3a-Ioana&rft.date=2022-07-01&rft.volume=14&rft.issue=7&rft.spage=1413&rft.pages=1413-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14071413&rft_dat=%3Cproquest_doaj_%3E2694025103%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694025103&rft_id=info:pmid/&rfr_iscdi=true