Loading…
Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions
By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the funct...
Saved in:
Published in: | Symmetry (Basel) 2022-07, Vol.14 (7), p.1413 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3 |
container_end_page | |
container_issue | 7 |
container_start_page | 1413 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Cotîrlă, Luminiţa-Ioana Wanas, Abbas Kareem |
description | By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results. |
doi_str_mv | 10.3390/sym14071413 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b</doaj_id><sourcerecordid>2694025103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgqV35AwGXMprXZDJLKa0W6gOs65CnpM40NZki49c7tSK9m_vg3HPvOQBcYnRDaY1uc99ihirMMD0BI4IqWoi6ZqdH9TmY5LxGQ5SoZByNwOy1b1vXpWDgKrptE7pv-Kj2vcvQxwQVfHJfcK7a0PQweviSXO5UasKHg_PdxnQhbvIFOPOqyW7yl8fgbT5bTR-K5fP9Ynq3LAypWVcY7QQvPfaMeMYV0oRqhwXhwtZaUVsRxTzVwhI_COKVMxZzTpwQRBnlLB2DxYHXRrWW2xRalXoZVZC_g5jepUpdMI2T3lZUcI-GfcFE7TXXmGkrnBGeeaIHrqsD1zbFz90gSq7jLm2G9yXhNUOkxIgOqOsDyqSYc3L-_ypGcm-7PLKd_gACJHTa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694025103</pqid></control><display><type>article</type><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><source>Publicly Available Content (ProQuest)</source><creator>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</creator><creatorcontrib>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</creatorcontrib><description>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14071413</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analytic functions ; coefficient estimates ; Mathematical analysis ; Matrices (mathematics) ; prestarlike functions ; Toeplitz matrices ; univalent functions</subject><ispartof>Symmetry (Basel), 2022-07, Vol.14 (7), p.1413</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</citedby><cites>FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</cites><orcidid>0000-0002-0269-0688 ; 0000-0001-5838-7365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694025103/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694025103?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Cotîrlă, Luminiţa-Ioana</creatorcontrib><creatorcontrib>Wanas, Abbas Kareem</creatorcontrib><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><title>Symmetry (Basel)</title><description>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</description><subject>Analytic functions</subject><subject>coefficient estimates</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>prestarlike functions</subject><subject>Toeplitz matrices</subject><subject>univalent functions</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtKAzEUDaJgqV35AwGXMprXZDJLKa0W6gOs65CnpM40NZki49c7tSK9m_vg3HPvOQBcYnRDaY1uc99ihirMMD0BI4IqWoi6ZqdH9TmY5LxGQ5SoZByNwOy1b1vXpWDgKrptE7pv-Kj2vcvQxwQVfHJfcK7a0PQweviSXO5UasKHg_PdxnQhbvIFOPOqyW7yl8fgbT5bTR-K5fP9Ynq3LAypWVcY7QQvPfaMeMYV0oRqhwXhwtZaUVsRxTzVwhI_COKVMxZzTpwQRBnlLB2DxYHXRrWW2xRalXoZVZC_g5jepUpdMI2T3lZUcI-GfcFE7TXXmGkrnBGeeaIHrqsD1zbFz90gSq7jLm2G9yXhNUOkxIgOqOsDyqSYc3L-_ypGcm-7PLKd_gACJHTa</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Cotîrlă, Luminiţa-Ioana</creator><creator>Wanas, Abbas Kareem</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0269-0688</orcidid><orcidid>https://orcid.org/0000-0001-5838-7365</orcidid></search><sort><creationdate>20220701</creationdate><title>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</title><author>Cotîrlă, Luminiţa-Ioana ; Wanas, Abbas Kareem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>coefficient estimates</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>prestarlike functions</topic><topic>Toeplitz matrices</topic><topic>univalent functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotîrlă, Luminiţa-Ioana</creatorcontrib><creatorcontrib>Wanas, Abbas Kareem</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotîrlă, Luminiţa-Ioana</au><au>Wanas, Abbas Kareem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1413</spage><pages>1413-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T2(2), T2(3), T3(2) and T3(1) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14071413</doi><orcidid>https://orcid.org/0000-0002-0269-0688</orcidid><orcidid>https://orcid.org/0000-0001-5838-7365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-07, Vol.14 (7), p.1413 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fd7386f06628489fb6b14bd8ec8f4f2b |
source | Publicly Available Content (ProQuest) |
subjects | Analytic functions coefficient estimates Mathematical analysis Matrices (mathematics) prestarlike functions Toeplitz matrices univalent functions |
title | Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20Toeplitz%20Matrices%20for%20a%20New%20Family%20of%20Prestarlike%20Functions&rft.jtitle=Symmetry%20(Basel)&rft.au=Cot%C3%AErl%C4%83,%20Lumini%C5%A3a-Ioana&rft.date=2022-07-01&rft.volume=14&rft.issue=7&rft.spage=1413&rft.pages=1413-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14071413&rft_dat=%3Cproquest_doaj_%3E2694025103%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-cbe865f1f42f46a0b23be18268d9ba3d72a4f3b8d2f39067ecd1662e882acaed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694025103&rft_id=info:pmid/&rfr_iscdi=true |