Loading…
A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma
The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic...
Saved in:
Published in: | Frontiers in neurology 2022-12, Vol.13, p.1074593-1074593 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-8ef3afb92cd6d4e0fb3e97a1c9f480d6f2a897ff2778c5e3b6fd8682743b61b43 |
container_end_page | 1074593 |
container_issue | |
container_start_page | 1074593 |
container_title | Frontiers in neurology |
container_volume | 13 |
creator | Zhu, Qinghui Shen, Shaoping Yang, Chuanwei Li, Mingxiao Zhang, Xiaokang Li, Haoyi Zhao, Xuzhe Li, Ming Cui, Yong Ren, Xiaohui Lin, Song |
description | The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA).
We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs.
A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts.
We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment. |
doi_str_mv | 10.3389/fneur.2022.1074593 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd86f18f396e4d18847a78f29a783659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd86f18f396e4d18847a78f29a783659</doaj_id><sourcerecordid>2760172876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-8ef3afb92cd6d4e0fb3e97a1c9f480d6f2a897ff2778c5e3b6fd8682743b61b43</originalsourceid><addsrcrecordid>eNpVkU1v3CAQhlGVqom2-QM9VBxz8ZYv83GptIrSNlLUSlV7rBCGYePINhvwJuq_L85uo4TDMMC8DwwvQh8oWXOuzac4wT6vGWFsTYkSreFv0BmVUjSMmfbkRX6Kzku5I3VwY7jk79Apl63WhtAz9GeDdzltp1Tm3mOocXRznyY8pgAD7lyBgJflz--bpsD9HiYPOLjZ4Zgy3tVimOaCH_v5Fqeh31bZFCpx6NPo3qO30Q0Fzo_zCv3-cvXr8ltz8-Pr9eXmpvGCmrnRELmLnWE-yCCAxI6DUY56E4UmQUbmtFExMqW0b4F3MgYtNVOiprQTfIWuD9yQ3J3d5dpE_muT6-3TRspb63JtcAC7KCPVkRsJIlCthXJKR2ZqrN9iKuvzgbXbdyMEX9vLbngFfX0y9bd2mx6sUabVQlbAxRGQU_2vMtuxLx6GwU2Q9sUyJQlVTKullB1KfU6lZIjP11BiF5vtk812sdkeba6ijy8f-Cz5byr_B7mqpos</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760172876</pqid></control><display><type>article</type><title>A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma</title><source>PubMed (Medline)</source><creator>Zhu, Qinghui ; Shen, Shaoping ; Yang, Chuanwei ; Li, Mingxiao ; Zhang, Xiaokang ; Li, Haoyi ; Zhao, Xuzhe ; Li, Ming ; Cui, Yong ; Ren, Xiaohui ; Lin, Song</creator><creatorcontrib>Zhu, Qinghui ; Shen, Shaoping ; Yang, Chuanwei ; Li, Mingxiao ; Zhang, Xiaokang ; Li, Haoyi ; Zhao, Xuzhe ; Li, Ming ; Cui, Yong ; Ren, Xiaohui ; Lin, Song</creatorcontrib><description>The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA).
We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs.
A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts.
We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment.</description><identifier>ISSN: 1664-2295</identifier><identifier>EISSN: 1664-2295</identifier><identifier>DOI: 10.3389/fneur.2022.1074593</identifier><identifier>PMID: 36588901</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>1p/19q codeletion ; mRNA-sequence ; Neurology ; oligodendroglioma ; prognostic model ; WHO CNS 5</subject><ispartof>Frontiers in neurology, 2022-12, Vol.13, p.1074593-1074593</ispartof><rights>Copyright © 2022 Zhu, Shen, Yang, Li, Zhang, Li, Zhao, Li, Cui, Ren and Lin.</rights><rights>Copyright © 2022 Zhu, Shen, Yang, Li, Zhang, Li, Zhao, Li, Cui, Ren and Lin. 2022 Zhu, Shen, Yang, Li, Zhang, Li, Zhao, Li, Cui, Ren and Lin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c419t-8ef3afb92cd6d4e0fb3e97a1c9f480d6f2a897ff2778c5e3b6fd8682743b61b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795846/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795846/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36588901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Qinghui</creatorcontrib><creatorcontrib>Shen, Shaoping</creatorcontrib><creatorcontrib>Yang, Chuanwei</creatorcontrib><creatorcontrib>Li, Mingxiao</creatorcontrib><creatorcontrib>Zhang, Xiaokang</creatorcontrib><creatorcontrib>Li, Haoyi</creatorcontrib><creatorcontrib>Zhao, Xuzhe</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Cui, Yong</creatorcontrib><creatorcontrib>Ren, Xiaohui</creatorcontrib><creatorcontrib>Lin, Song</creatorcontrib><title>A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma</title><title>Frontiers in neurology</title><addtitle>Front Neurol</addtitle><description>The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA).
We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs.
A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts.
We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment.</description><subject>1p/19q codeletion</subject><subject>mRNA-sequence</subject><subject>Neurology</subject><subject>oligodendroglioma</subject><subject>prognostic model</subject><subject>WHO CNS 5</subject><issn>1664-2295</issn><issn>1664-2295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v3CAQhlGVqom2-QM9VBxz8ZYv83GptIrSNlLUSlV7rBCGYePINhvwJuq_L85uo4TDMMC8DwwvQh8oWXOuzac4wT6vGWFsTYkSreFv0BmVUjSMmfbkRX6Kzku5I3VwY7jk79Apl63WhtAz9GeDdzltp1Tm3mOocXRznyY8pgAD7lyBgJflz--bpsD9HiYPOLjZ4Zgy3tVimOaCH_v5Fqeh31bZFCpx6NPo3qO30Q0Fzo_zCv3-cvXr8ltz8-Pr9eXmpvGCmrnRELmLnWE-yCCAxI6DUY56E4UmQUbmtFExMqW0b4F3MgYtNVOiprQTfIWuD9yQ3J3d5dpE_muT6-3TRspb63JtcAC7KCPVkRsJIlCthXJKR2ZqrN9iKuvzgbXbdyMEX9vLbngFfX0y9bd2mx6sUabVQlbAxRGQU_2vMtuxLx6GwU2Q9sUyJQlVTKullB1KfU6lZIjP11BiF5vtk812sdkeba6ijy8f-Cz5byr_B7mqpos</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Zhu, Qinghui</creator><creator>Shen, Shaoping</creator><creator>Yang, Chuanwei</creator><creator>Li, Mingxiao</creator><creator>Zhang, Xiaokang</creator><creator>Li, Haoyi</creator><creator>Zhao, Xuzhe</creator><creator>Li, Ming</creator><creator>Cui, Yong</creator><creator>Ren, Xiaohui</creator><creator>Lin, Song</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221214</creationdate><title>A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma</title><author>Zhu, Qinghui ; Shen, Shaoping ; Yang, Chuanwei ; Li, Mingxiao ; Zhang, Xiaokang ; Li, Haoyi ; Zhao, Xuzhe ; Li, Ming ; Cui, Yong ; Ren, Xiaohui ; Lin, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-8ef3afb92cd6d4e0fb3e97a1c9f480d6f2a897ff2778c5e3b6fd8682743b61b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1p/19q codeletion</topic><topic>mRNA-sequence</topic><topic>Neurology</topic><topic>oligodendroglioma</topic><topic>prognostic model</topic><topic>WHO CNS 5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qinghui</creatorcontrib><creatorcontrib>Shen, Shaoping</creatorcontrib><creatorcontrib>Yang, Chuanwei</creatorcontrib><creatorcontrib>Li, Mingxiao</creatorcontrib><creatorcontrib>Zhang, Xiaokang</creatorcontrib><creatorcontrib>Li, Haoyi</creatorcontrib><creatorcontrib>Zhao, Xuzhe</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Cui, Yong</creatorcontrib><creatorcontrib>Ren, Xiaohui</creatorcontrib><creatorcontrib>Lin, Song</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qinghui</au><au>Shen, Shaoping</au><au>Yang, Chuanwei</au><au>Li, Mingxiao</au><au>Zhang, Xiaokang</au><au>Li, Haoyi</au><au>Zhao, Xuzhe</au><au>Li, Ming</au><au>Cui, Yong</au><au>Ren, Xiaohui</au><au>Lin, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma</atitle><jtitle>Frontiers in neurology</jtitle><addtitle>Front Neurol</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>13</volume><spage>1074593</spage><epage>1074593</epage><pages>1074593-1074593</pages><issn>1664-2295</issn><eissn>1664-2295</eissn><abstract>The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA).
We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs.
A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts.
We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36588901</pmid><doi>10.3389/fneur.2022.1074593</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-2295 |
ispartof | Frontiers in neurology, 2022-12, Vol.13, p.1074593-1074593 |
issn | 1664-2295 1664-2295 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fd86f18f396e4d18847a78f29a783659 |
source | PubMed (Medline) |
subjects | 1p/19q codeletion mRNA-sequence Neurology oligodendroglioma prognostic model WHO CNS 5 |
title | A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prognostic%20estimation%20model%20based%20on%20mRNA-sequence%20data%20for%20patients%20with%20oligodendroglioma&rft.jtitle=Frontiers%20in%20neurology&rft.au=Zhu,%20Qinghui&rft.date=2022-12-14&rft.volume=13&rft.spage=1074593&rft.epage=1074593&rft.pages=1074593-1074593&rft.issn=1664-2295&rft.eissn=1664-2295&rft_id=info:doi/10.3389/fneur.2022.1074593&rft_dat=%3Cproquest_doaj_%3E2760172876%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-8ef3afb92cd6d4e0fb3e97a1c9f480d6f2a897ff2778c5e3b6fd8682743b61b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760172876&rft_id=info:pmid/36588901&rfr_iscdi=true |