Loading…

The Rock Burst Hazard Evaluation Using Statistical Learning Approaches

The great threat and destructiveness brought by a rock burst make its prediction and prevention crucial in engineering. The rock burst hazard evaluation at project locations is an effective way of preventing rock burst since currently real-time prediction is not available. Since different control fa...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2021, Vol.2021 (1)
Main Authors: Chen, Jie, Gao, Jingkuan, Pu, Yuanyuan, Gao, Mingzhong, Wei, Like, Wang, Chong, Peng, Bo, Zhao, Xusheng, Zhang, Guangchao, Zhang, Zhigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The great threat and destructiveness brought by a rock burst make its prediction and prevention crucial in engineering. The rock burst hazard evaluation at project locations is an effective way of preventing rock burst since currently real-time prediction is not available. Since different control factors and discrimination conditions of rock burst were accepted by conventional risk determination methods, the rock burst risk determination in the same area may produce conflicting results. In this study, Naive Bayes statistical learning models based on different model prior distributions representing highly complicated nonlinear relationship between rock burst hazard and impact factors were built to evaluate the rock burst hazards. The results suggested that the Bayes statistical learning model based on a Gaussian prior has the strongest performance over four preset prior distributions. Combining the rock mechanics parameters measured in the laboratory and the stress data collected on the project sites, the proposed model was successfully employed to evaluate the kimberlite rock burst risk of a diamond mine in Canada. The Bayes statistical learning model exhibits its robustness and generalization in rock burst hazard evaluation, which can be generalized for similar engineering cases with enough supported data.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/5576480