Loading…
A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture
Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform se...
Saved in:
Published in: | BMC bioinformatics 2022-06, Vol.23 (1), p.251-251, Article 251 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3 |
container_end_page | 251 |
container_issue | 1 |
container_start_page | 251 |
container_title | BMC bioinformatics |
container_volume | 23 |
creator | Shaukat, Zeeshan Farooq, Qurat Ul Ain Tu, Shanshan Xiao, Chuangbai Ali, Saqib |
description | Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation. |
doi_str_mv | 10.1186/s12859-022-04794-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fd90cb670cce4fd5aafa9d67cc49dc58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fd90cb670cce4fd5aafa9d67cc49dc58</doaj_id><sourcerecordid>2681043870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3</originalsourceid><addsrcrecordid>eNpdkk9v3CAQxa2qUZOm_QI9VEi99EIDBoy5VIrSf5Gi5NKc0RiGXa9sswVcqd--JJtGSU8M8OaneaPXNO84-8R5351l3vbKUNa2lEltJDUvmhMuNactZ-rlk_q4eZ3zjjGue6ZeNcdCacWZYCdNPie5QEEaAy1bpJAKKei2y_hrRVIi2WMKMc3ETXH1dICMnmScYSmjq8VmxqX2j3Ehax6XDfGIezIhpOXuJr6QW3qNhUBy27GCy5rwTXMUYMr49uE8bW6_ff158YNe3Xy_vDi_ok6arlCOEgE6PsiBCy2ZDjBwxVQbZBCqk72vFSCo3ik1SB6k1n7ou44FYYB7cdpcHrg-ws7u0zhD-mMjjPb-IaaNrXZHN6EN3jA3dJo5hzJ4BRDA-E67Oop3qq-szwfWfh1m9K66TjA9gz7_Wcat3cTf1rStUVxWwMcHQIp1tbnYecwOpwkWjGu2bddzJkWvWZV--E-6i2ta6qqqynAhemG6qmoPKpdizgnD4zCc2bt82EM-bM2Hvc-HNbXp_VMbjy3_AiH-AoCNuBs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691338396</pqid></control><display><type>article</type><title>A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Shaukat, Zeeshan ; Farooq, Qurat Ul Ain ; Tu, Shanshan ; Xiao, Chuangbai ; Ali, Saqib</creator><creatorcontrib>Shaukat, Zeeshan ; Farooq, Qurat Ul Ain ; Tu, Shanshan ; Xiao, Chuangbai ; Ali, Saqib</creatorcontrib><description>Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-022-04794-9</identifier><identifier>PMID: 35751030</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>3D U-Net ; Accuracy ; Brain ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Brain tumor ; Brain tumors ; Cloud Computing ; Datasets ; Deep Learning ; Experiments ; Glioma ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Literature reviews ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical analysis ; Medical diagnosis ; Methods ; Neural networks ; Optimization ; Semantic segmentation ; Semantics ; Tomography ; Traumatic brain injury ; Tumors</subject><ispartof>BMC bioinformatics, 2022-06, Vol.23 (1), p.251-251, Article 251</ispartof><rights>2022. The Author(s).</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3</citedby><cites>FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229514/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2691338396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35751030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaukat, Zeeshan</creatorcontrib><creatorcontrib>Farooq, Qurat Ul Ain</creatorcontrib><creatorcontrib>Tu, Shanshan</creatorcontrib><creatorcontrib>Xiao, Chuangbai</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><title>A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.</description><subject>3D U-Net</subject><subject>Accuracy</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumor</subject><subject>Brain tumors</subject><subject>Cloud Computing</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Experiments</subject><subject>Glioma</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Literature reviews</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Tomography</subject><subject>Traumatic brain injury</subject><subject>Tumors</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9v3CAQxa2qUZOm_QI9VEi99EIDBoy5VIrSf5Gi5NKc0RiGXa9sswVcqd--JJtGSU8M8OaneaPXNO84-8R5351l3vbKUNa2lEltJDUvmhMuNactZ-rlk_q4eZ3zjjGue6ZeNcdCacWZYCdNPie5QEEaAy1bpJAKKei2y_hrRVIi2WMKMc3ETXH1dICMnmScYSmjq8VmxqX2j3Ehax6XDfGIezIhpOXuJr6QW3qNhUBy27GCy5rwTXMUYMr49uE8bW6_ff158YNe3Xy_vDi_ok6arlCOEgE6PsiBCy2ZDjBwxVQbZBCqk72vFSCo3ik1SB6k1n7ou44FYYB7cdpcHrg-ws7u0zhD-mMjjPb-IaaNrXZHN6EN3jA3dJo5hzJ4BRDA-E67Oop3qq-szwfWfh1m9K66TjA9gz7_Wcat3cTf1rStUVxWwMcHQIp1tbnYecwOpwkWjGu2bddzJkWvWZV--E-6i2ta6qqqynAhemG6qmoPKpdizgnD4zCc2bt82EM-bM2Hvc-HNbXp_VMbjy3_AiH-AoCNuBs</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Shaukat, Zeeshan</creator><creator>Farooq, Qurat Ul Ain</creator><creator>Tu, Shanshan</creator><creator>Xiao, Chuangbai</creator><creator>Ali, Saqib</creator><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220624</creationdate><title>A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture</title><author>Shaukat, Zeeshan ; Farooq, Qurat Ul Ain ; Tu, Shanshan ; Xiao, Chuangbai ; Ali, Saqib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D U-Net</topic><topic>Accuracy</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumor</topic><topic>Brain tumors</topic><topic>Cloud Computing</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Experiments</topic><topic>Glioma</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Literature reviews</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Tomography</topic><topic>Traumatic brain injury</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaukat, Zeeshan</creatorcontrib><creatorcontrib>Farooq, Qurat Ul Ain</creatorcontrib><creatorcontrib>Tu, Shanshan</creatorcontrib><creatorcontrib>Xiao, Chuangbai</creatorcontrib><creatorcontrib>Ali, Saqib</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaukat, Zeeshan</au><au>Farooq, Qurat Ul Ain</au><au>Tu, Shanshan</au><au>Xiao, Chuangbai</au><au>Ali, Saqib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2022-06-24</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>251</spage><epage>251</epage><pages>251-251</pages><artnum>251</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Glioma is the most aggressive and dangerous primary brain tumor with a survival time of less than 14 months. Segmentation of tumors is a necessary task in the image processing of the gliomas and is important for its timely diagnosis and starting a treatment. Using 3D U-net architecture to perform semantic segmentation on brain tumor dataset is at the core of deep learning. In this paper, we present a unique cloud-based 3D U-Net method to perform brain tumor segmentation using BRATS dataset. The system was effectively trained by using Adam optimization solver by utilizing multiple hyper parameters. We got an average dice score of 95% which makes our method the first cloud-based method to achieve maximum accuracy. The dice score is calculated by using Sørensen-Dice similarity coefficient. We also performed an extensive literature review of the brain tumor segmentation methods implemented in the last five years to get a state-of-the-art picture of well-known methodologies with a higher dice score. In comparison to the already implemented architectures, our method ranks on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma segmentation.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>35751030</pmid><doi>10.1186/s12859-022-04794-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2022-06, Vol.23 (1), p.251-251, Article 251 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fd90cb670cce4fd5aafa9d67cc49dc58 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | 3D U-Net Accuracy Brain Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Brain tumor Brain tumors Cloud Computing Datasets Deep Learning Experiments Glioma Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Literature reviews Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Medical diagnosis Methods Neural networks Optimization Semantic segmentation Semantics Tomography Traumatic brain injury Tumors |
title | A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20state-of-the-art%20technique%20to%20perform%20cloud-based%20semantic%20segmentation%20using%20deep%20learning%203D%20U-Net%20architecture&rft.jtitle=BMC%20bioinformatics&rft.au=Shaukat,%20Zeeshan&rft.date=2022-06-24&rft.volume=23&rft.issue=1&rft.spage=251&rft.epage=251&rft.pages=251-251&rft.artnum=251&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-022-04794-9&rft_dat=%3Cproquest_doaj_%3E2681043870%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-1e4eaa61b4b137407fab15052f4f35648d2f4aea58c55b41f477db8660f39a1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691338396&rft_id=info:pmid/35751030&rfr_iscdi=true |